Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny magnets mimic steam, water and ice

21.09.2015

Researchers at the Paul Scherrer Institute (PSI) created a synthetic material out of 1 billion tiny magnets. Astonishingly, it now appears that the magnetic properties of this so-called metamaterial change with the temperature, so that it can take on different states; just like water has a gaseous, liquid and a solid state. This material made of nanomagnets might well be refined for electronic applications of the future – such as for more efficient information transfer.

A synthetic material – created from 1 billion nanomagnets – assumes different aggregate states depending on the temperature: the so-called metamaterial exhibits phase transitions, much like those between steam, water and ice. This effect was observed by a team of researchers headed by Laura Heyderman from PSI.


PSI researchers have created a synthetic magnetic metamaterial. Depending on the temperature it behaves similarly to ice, water and steam.

Paul Scherrer Institut/Luca Anghinolfi

“We were surprised and excited,” explains Heyderman. “Only complex systems are able to display phase transitions.” And as complex systems can provide new kinds of information transfer, the result of the new study also reveals that the PSI researchers’ metamaterial would be a potential candidate here.

The major advantage of the synthetic metamaterial is that it can be customised virtually freely. While the individual atoms in a natural material cannot be rearranged with pinpoint precision on such a grand scale, the researchers say that this is possible with the nanomagnets.

Honeycomb of nanomagnets

The magnets are only 63 nanometres long and shaped roughly like grains of rice. The researchers used a highly advanced technique to place 1 billion of these tiny grains on a flat substrate to form a large-scale honeycomb pattern. The nanomagnets covered a total area of five by five millimetres.

Thanks to a special measuring technique, the scientists initially studied the collective magnetic behaviour of their metamaterial at room temperature. Here there was no order in the magnetic orientation: the magnetic north and south poles pointed randomly in one direction or another.

When the researchers cooled the metamaterial gradually and constantly, however, they reached a point where a higher order appeared: the tiny magnets now noticed each other more than before. As the temperature fell further, there was another change towards an even higher order, in which the magnetic arrangement appeared almost frozen.

The long-range order of water molecules increases in a similar way at the moment when water freezes into ice. “We were fascinated by the fact that our synthetic material displayed this everyday phenomenon of a phase transition,” says Heyderman.

Metamaterial can be customised

In the next step, the researchers might influence these magnetic phase transitions by altering the size, shape and arrangement of the nanomagnets. This enables the creation of new states of matter, which could also give rise to applications: “The beauty of it all: tailored phase transitions could enable metamaterials to be adapted specifically for different needs in future,” explains Heyderman.

Besides its potential use in information transfer, the metamaterial might also prove useful in data storage or for sensors that measure magnetic fields. Very generally it could be used in spintronics, so in a promising future development in electronics for novel computer technology.

The measurements the researchers used to reveal the magnetic orientation of the nanomagnets, and therefore the properties of the metamaterial, can only be conducted exclusively at PSI. The equipment at the SμS, which is unique worldwide, supplies beams from exotic elementary particles called muons, which can be used to study nanomagnetic properties. The project took place in collaboration with a research group headed by Stephen Lee from the University of St Andrews, Scotland.

Text: Paul Scherrer Institut/Laura Hennemann

About PSI

The Paul Scherrer Institute (PSI) develops, builds and operates large, complex research facilities, and makes them available to the national and international research community. The Institute's own principle research interests are matter and material, energy and the environment, and human health. Educating young people is a key priority at PSI, which is why around a quarter of our staff are postdocs, doctoral students or undergraduates. PSI employs a total of 1,900 people, making it the largest research institute in Switzerland. Its annual budget amounts to around CHF 350 million.

Contact

Prof. Dr Laura Heyderman,
Laboratory of Micro- and Nanotechnology, Paul Scherrer Institute; telephone: +41 56 310 2613, e-mail: laura.heyderman@psi.ch

Dr. Hubertus Luetkens,
Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute; telephone: +41 56 310 4450, e-mail: hubertus.luetkens@psi.ch

Dr. Peter Derlet,
Solid State Theory Group, Paul Scherrer Institute; telephone: +41 56 310 3164, e-mail: peter.derlet@psi.ch

Original publication

Thermodynamic phase transitions in a frustrated magnetic metamaterial
L. Anghinolfi, H. Luetkens, J. Perron, M.G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P.M. Derlet, S.L. Lee, and L.J. Heyderman, Nature Communications, 21 September 2015, doi: 10.1038/ncomms9278 (Link: http://dx.doi.org/10.1038/ncomms9278)

Weitere Informationen:

http://Original press release at: http://psi.ch/y424
http://Micro- and Nanotechnology: http://www.psi.ch/media/micro-and-nanotechnology
http://Research Using Muons: http://www.psi.ch/media/research-using-muons

Dagmar Baroke | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>