Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny lasers from a gallery of whispers

20.09.2017

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a phenomenon similar to an effect observed in circular galleries, such as in some cathedrals or museums, where sound waves travel across the gallery and are reflected and refocused tightly enough that a whisper on one side can be heard on the other.


Scanning electron micrograph of a polymeric WGM split-disk cavity: Two opposing half-disks (R=25μm) with an intermediate air gap of several microns are structured onto an elastomeric PDMS substrate with direct laser writing.

Credit: Tobias Siegle, Karlsruhe Institute of Technology

The same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week in APL Photonics, by AIP Publishing, investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths. Not only is the tuning range of the new devices broader than has been possible in the past, it is completely reversible.

A unique feature of the design, according to lead author Tobias Siegle of Karlsruhe Institute of Technology in Germany, is that tuning is made possible by changing the size of a flexible substrate. Stretching the substrate changes the distance between the two sides of the split disk in the resonator and thus, the wavelength of the light produced.

The disk itself is typically about 25 microns across, with an initial gap between its two halves of roughly 2.5 microns, just 3 percent the diameter of a typical human hair. The disk is mounted on an elastomer, or stretchy plastic substrate, which can be pulled in a direction perpendicular to the disk's split, decreasing the gap size. The light produced by these micro-lasers shifts toward the blue range of the spectrum when the gap size decreases. They observed wavelength shifts of several nanometers in the visible range.

"Our new design produces a broad tuning range that cannot be easily achieved with other WGM resonators," Siegle said. "Additionally, the tuning mechanism is completely reversible."

This feature allows the device to be used in fundamental optics research. Another feature of the split-disk technology is enhanced sensitivity in refractive index sensing.

"For a gap width of 1.4 microns, the sensing performance is increased by 65 percent," Siegle said, when comparing to a reference disk resonator without a gap.

The most useful devices have a low lasing threshold, since this allows the use of small amounts of energy. A low threshold reduces or prevents photo-bleaching of the dye molecules used in the device and increases its expected lifetime. The investigators tested their design and found low-threshold lasing for split disks fabricated using a 3-D or electron-beam lithography technique.

Another quantity they studied is the quality, or Q factor, which corresponds to the photon storage time in the laser cavity. A high Q value is desirable, and although investigators found that their split-disk design reduced Q somewhat, the lasing threshold was within an appropriate range, making the design valuable.

Future work will be focused on developing tunable coupled resonator waveguides, which can be used as optical delay lines or filters, and in other applications.

###

The article, "Split-disk micro-lasers: Tunable whispering gallery mode cavities," is authored by T. Siegle, M. Remmel, S. Krammer and H. Kalt. The article appeared in the journal APL Photonics Sept. 19, 2017 [DOI: 10.1063/1.4985766] and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4985766.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See http://scitation.aip.org/content/aip/journal/app.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>