Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

29.04.2015

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability and keeping costs to a minimum. SNC’s Dream Chaser is able to do more than just transport crew and cargo to Low-Earth Orbit (LEO).


Credit: NASA



Credit: Sierra Nevada Corporation

The vehicle is uniquely able to operate as an independent science platform, logistics enabler, or orbital servicing vehicle with the ability to deploy, retrieve, repair, replace, refuel, or assemble items in space. Dream Chaser provides the only reusable, human-rated, lifting-body spacecraft with a commercial runway landing capability, almost anywhere in the world - offering safe, affordable, flexible and reliable transportation to space.

In developing the spacecraft, which will travel through space at speeds of up to 31,000 kilometer or 19,500 miles per hour, SNC is relying on Product Lifecycle Management (PLM) engineering software from Siemens. Use of this advanced engineering software tool has enabled a 20 percent reduction in the time required to work within this key Dream Chaser software program.

Sierra Nevada Corporation (SNC), the owner, developer and prime operator of the Dream Chaser spacecraft, is working on the project in partnership with the “Dream Team” consisting of world-class aerospace industry players, several universities and all ten Centers of the U.S. space agency NASA.

The European Space Agency (ESA), the German Aerospace Center (DLR) and the Japanese Aerospace Exploration Agency (JAXA) are also part of the Dream Team. SNC’s alliance with Dream Team Member Siemens PLM Software group, will further help facilitate the international expansion of the Dream Team.

The strategy

Considering the gigantic costs inherent to the space industry, the innovative space travel and technology pioneer, SNC, came up with the strategy of building on existing experience to speed up the development process and keep costs down. Using NASA HL-20 space plane as a basis for the Dream Chaser allowed SNC to take advantage of the benefits of the HL-20’s extensive development heritage encompassing both significant design refinements and exhaustive testing.

NASA originally envisioned using the HL-20 as a crew rescue vehicle for the International Space Station (ISS), designed to land horizontally on conventional runways. SNC married this spaceplane concept with the Atlas V rocket of the United Launch Alliance, whose development also benefited from the use of Siemens PLM Software technology.

This combined strategy allowed SNC to substantially reduce both the time and costs needed for Dream Chaser’s development. The outcome: the Dream Chaser, a reusable, optionally-piloted spacecraft capable of transporting up to seven crew and cargo into LEO. The Dream Chaser is also able to launch and repair satellites, as well as, conduct free-flying microgravity experiments and dispose of space debris.

Shorter development times and cost savings

Shorter development periods and lower development costs are crucial to gaining a competitive advantage for companies working in the aerospace industry. Because these are the key to global success, SNC looked for only the most capable companies with the most advanced technologies to join the Dream Team to assist with the Dream Chaser program. To allow the integrated Dream Team to work successfully on this complex product in a multi-CAD environment, SNC opted to use the engineering software tools within the Siemens PLM Software technology, which came with a successful track record in the development of the Atlas-V rocket and the Mars Rover Curiosity.

Use of this engineering software also allowed for the integration of different computer-aided design (CAD) approaches. SNC opted to use the advanced engineering software within the Siemens PLM Software suite to assist with an integrated product design, development and production solution which enabled engineers to load and work with complex design data models up to 20 percent faster thus helping to reduce the development time needed for the Dream Chaser program.

John Curry, a former Space Shuttle and Space Station Flight Director who now leads the Dream Chaser integrated systems design, development, test and evaluation program, firmly believes that simulation-led design also makes for enhanced safety, “We want to send people into space ten times more safely at 1/20th of the previous cost.” he says. “And doing rapid prototyping via simulation first is a faster path.” «

Sierra Nevada Corporation

SNC’s Space Systems, headquartered in Louisville, Colorado, designs and manufactures advanced spacecraft, space technologies, and propulsion systems for civil, commercial and national security space missions. With 25 years of spaceflight heritage supporting more than 400 space missions, SNC has been trusted to provide hardware for the most advanced, critical space systems that the U.S. has deployed. SNC has also partnered with NASA on over 70 space missions including support to twelve missions to Mars, providing the critical Descent Brake mechanism to lower the Curiosity rover onto the planetary surface on the most recent Mars Science Laboratory (MSL) mission. SNC’s Space Systems launches a piece of hardware into space on average every three weeks. The Dream Chaser is based on the concept of NASA’s HL-20 lifting-body spaceplane whose specially-formed body is designed to produce lift. It has a safe, non-toxic on-board hybrid propulsion system and is reusable. It is designed to be used a minimum of 25 times and to land horizontally on conventional runways.

The Dream Chaser is being developed with the aid of Siemens PLM Software (design, development and production). «

Product Lifecycle Management

Product Lifecycle Management (PLM) software, a critical subset of industry software, is a set of integrated solutions used throughout a product’s complete lifecycle, from design through retirement. PLM software is used to digitally design, analyze, simulate and test products before they are manufactured to ensure proper performance. It is then used throughout the digital manufacturing process in an automated digital factory. PLM software manages all the data associated with a product’s development, delivery and retirement, and makes that data available in the right place, at the right time, to the right individual. «


History

The ISS has always been a joint effort between NASA and the Russian, European, Canadian and Japanese space agencies. Despite the current political climate, the ISS continues its nonpartisan mission with five partner nations and 16 member nations. In 1998, the first ISS module was launched into orbit atop a Russian Proton rocket. When the Americans retired their space shuttle program in 2011, NASA launched the Commercial Crew Program, which was designed to incentivize private companies such as SNC to develop their own space transportation vehicles. On October 14, 2013, the European system specialist OHB System AG, concentrating on development and execution

of low-orbiting and geostationary satellites, launched a bilateral partnership for the commercial provision of supplies for ISS. OHB System and the Space Administration of the German Aerospace Center (DLR) signed an agreement providing for the use of funding from the national space program to finance a study to explore possible uses of SNC’s Dream Chaser. Named DC4EU (Dream Chaser for European Utilization), the project was created to look into ways in which the Dream Chaser can be used to address German and European requirements for the transportation of payloads and astronauts to the ISS and for deployment as an unmanned space vehicle allowing European scientists to conduct research under weightless conditions over extended periods of time. «

Aerospace & Defense Solutions

www.plm.automation.siemens.com/en_us/aerospace-defense/index.cfm 


PLM-Software NX

www.plm.automation.siemens.com/en_us/products/nx/index.shtml 


Background Information: Siemens PLM Software

www.siemens.com/press/pool/de/events/2015/corporate/2015-01-ula-rocket/fact-sheet-plm-e.pdf 


Dream Chaser Highlight Video

www.youtube.com/watch?v=NPSJLqwljKA 


Dream Chaser: First Free-Flight Approach-and-Landing Test

www.youtube.com/watch?v=QgdFotAkUEU

Contact

Siemens AG
Communications and Government Affairs
Internal and External Communications
Gleiwitzer Str. 555
90475 Nuremberg, Germany

Contact MediaService
Ursula Lang
Tel.: +49 (0)911- 895 7947

ursula.lang@siemens.com

Ursula Lang | Siemens MediaService

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>