Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thor's hammer to crush materials at 1 million atmospheres

06.01.2016

Sophisticated features may influence eventual Z-machine rebuild

A new Sandia National Laboratories accelerator called Thor is expected to be 40 times more efficient than Sandia's Z machine, the world's largest and most powerful pulsed-power accelerator, in generating pressures to study materials under extreme conditions.


Sandia National Laboratories technician Eric Breden installs a transmission cable on the silver disk that is the new pulsed-power machine's central powerflow assembly. (Photo by Randy Montoya). Click on the thumbnail for a high-resolution image.

Credit: Randy Montoya, Sandia National Laboratories

"Thor's magnetic field will reach about one million atmospheres, about the pressures at Earth's core," said David Reisman, lead theoretical physicist of the project.

Though unable to match Z's 5 million atmospheres, the completed Thor will be smaller -- 2,000 rather than 10,000 square feet -- and will be considerably more efficient due to design improvements that use hundreds of small capacitors instead of Z's few large ones.

Remarkable structural transformation

This change resembles the transformation of computer architecture in which a single extremely powerful computer chip was replaced with many relatively simple chips working in unison, or to the evolution from several high-voltage vacuum tubes to computers powered by a much larger number of low-voltage solid-state switches.

A major benefit in efficiency is that while Z's elephant-sized capacitors require large switches to shorten the machine's electrical pulse from a microsecond to 100 nanoseconds, with its attendant greater impact, the small switches that service Thor's capacitors discharge current in a 100-nanosecond pulse immediately, eliminating energy losses inevitable when compressing a long pulse.

The new architecture also allows finer control of the pulse sent to probe materials.

Toward a more perfect pulse shape

Said Reisman, "Individual cables from pairs of capacitors separate our signals. By combining these signals in any manner we choose, we can tailor very precise pulses of electrical current."

Tailored pulse shapes are needed to avoid shocks that would force materials being investigated to change state. "We want the material to stay in its solid state as we pass it through increasing pressures," he said. "If we shock the material, it becomes a hot liquid and doesn't give us information."

Another advantage for Thor in such testing is that each capacitor's transit time can be not only controlled to the nanosecond level but isolated from the other capacitors. "In 30 seconds on a computer, we can determine the shape of the pulse that will produce a desired compression curve, whereas it takes days to determine how to create the ideal pulse shape for a Z experiment," Reisman said.

Furthermore, because Thor can fire so frequently -- less hardware damage per shot requires fewer technicians and enables more rapid rebooting -- researchers will have many more opportunities to test an idea, he said.

But there's more at stake than extra experiments or even new diagnostics. There's testing the efficiency of a radically different accelerator design.

Radical shoeboxes

Thor's shoebox-sized units, known as "bricks," contain two capacitors and a switch. The assembled unit is a fourth-generation descendant of a device jointly developed by Sandia and the Institute of High-Current Electronics in Tomsk, Russia, called a linear transformer driver (LTD). The original LTD units, also called "bricks," had no cables to separate outputs, but instead were linked together to add voltage as well as current. (Because Thor's bricks are isolated from each other, they add current but not voltage.)

Everything depends upon adding bricks. Sandia is building Thor in stages and already has assembled materials. Two intermediate stages are expected in 2016. These will comprise 24 bricks (Thor 24) and 48 bricks (Thor 48). "These are 'first-light' machines that will be used for initial experiments and validation," Reisman said.

Thor 144, when completed, should reach 1 million atmospheres of pressure.

Sandia manager Bill Stygar said more powerful LTD versions of Z ultimately could bring about thermonuclear ignition and even high-yield fusion.

Ignition would be achieved when the fusion target driven by the machine releases more energy in fusion than the electrical energy delivered by the machine to the target. High yield would be achieved when the fusion energy released exceeds the energy initially stored by the machine's capacitors.

High-yield fusion

A paper published Sept. 9, in Physical Review Special Topics - Accelerators and Beams, co-authored by Reisman, lead electrical engineer Brian Stoltzfus, Stygar, lead mechanical engineer Kevin Austin and colleagues, outlined Sandia's plan for Thor. A Nov. 30 paper, led by Stygar in the same journal, discusses the possibility of building next-generation LTD-powered accelerators to achieve ignition and high-yield fusion.

The academic community also is interested in Thor's architecture. "Part of the motivation for Thor was to develop affordable and compact machines that could be operated at universities," said Reisman. Institutions that have expressed interest include Cornell University, University of California San Diego, Imperial College London and the Carnegie Institution.

Thor's theoretical design was supported by Sandia's Laboratory Directed Research and Development office; later engineering details and hardware were supported by the National Nuclear Security Administration's Science Campaign.

###

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness

Media Contact

Neal Singer
nsinger@sandia.gov
505-845-7078

 @SandiaLabs

http://www.sandia.gov 

Neal Singer | EurekAlert!

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>