Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the strong interaction verified

27.03.2015

Supercomputer calculates mass difference between neutron

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible.


This image shows supercomputer JUQUEEN

Copyright: Forschungszentrum Jülich

Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. The findings, which have been published in the current edition of Science, are considered a milestone by many physicists and confirm the theory of the strong interaction.

As one of the most powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive for the simulation.

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-sive than protons. The experimentally determined masses differ by only around 0.14 percent. A slightly smaller or larger value of the mass difference would have led to a dramatically different universe, with too many neutrons, not enough hydrogen, or too few heavier elements.

The tiny mass difference is the reason why free neutrons decay on average after around ten minutes, while protons - the unchanging building blocks of matter - remain stable for a practically unlimited period.

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch (Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent theory of particles and forces that form the neutron and the proton known as quantum chromodynamics.

Today, we know that protons and neutrons are composed of "up quarks" and "down quarks". The proton is made of one down and two up quarks, while the neutron is composed of one up and two down quarks.

Simulations on supercomputers over the last few years confirmed that most of the mass of the proton and neutron results from the energy carried by their quark constituents in accordance with Einstein's formula E=mc2.

However, a small contribution from the electromagnetic field surrounding the electrically charged proton should make it about 0.1 percent more massive than the neutral neutron. The fact that the neutron mass is measured to be larger is evidently due to the different masses of the quarks, as Fodor and his team have now shown in extremely complex simulations.

For the calculations, the team developed a new class of simulation techniques combining the laws of quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine the effects of electromagnetic interactions. By controlling all error sources, the scientists suc-cessfully demonstrated how finely tuned the forces of nature are.

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations allocate computation time on JUQUEEN to users in a competitive process.

"Only using world-class computers, such as those available to the science community at Forschungszentrum Jülich, was it possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well as by the computing centres in Garching (LRZ) and Stuttgart (HLRS).

The results of this work by Fodor's team of physicists from Bergische Universität Wuppertal, Centre de Physique Théorique de Marseille, Eötvös University Budapest, and Forschungszentrum Jülich open the door to a new generation of simulations that will be used to determine the properties of quarks, gluons, and nuclear particles. According to Professor Kálmán Szabó from Forschungszentrum Jülich, "In future, we will be able to test the standard model of elementary particle physics with a tenfold increase in precision, which could possibly enable us to identify effects that would help us to uncover new physics beyond the standard model."

"Forschungszentrum Jülich is supporting the work of excellent researchers in many areas of science with its supercomputers. Basic research such as elementary particle physics is an area where methods are forged, and the resulting tools are also welcomed by several other users," says Prof. Dr. Sebastian M. Schmidt, member of the Board of Directors at Jülich who has supported and encouraged these scientific activities for years.

Media Contact

Tobias Schloesser
t.schloesser@fz-juelich.de
49-246-161-4771

http://www.fz-juelich.de 

Tobias Schloesser | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>