Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the strong interaction verified

27.03.2015

Supercomputer calculates mass difference between neutron

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible.


This image shows supercomputer JUQUEEN

Copyright: Forschungszentrum Jülich

Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. The findings, which have been published in the current edition of Science, are considered a milestone by many physicists and confirm the theory of the strong interaction.

As one of the most powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive for the simulation.

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-sive than protons. The experimentally determined masses differ by only around 0.14 percent. A slightly smaller or larger value of the mass difference would have led to a dramatically different universe, with too many neutrons, not enough hydrogen, or too few heavier elements.

The tiny mass difference is the reason why free neutrons decay on average after around ten minutes, while protons - the unchanging building blocks of matter - remain stable for a practically unlimited period.

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch (Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent theory of particles and forces that form the neutron and the proton known as quantum chromodynamics.

Today, we know that protons and neutrons are composed of "up quarks" and "down quarks". The proton is made of one down and two up quarks, while the neutron is composed of one up and two down quarks.

Simulations on supercomputers over the last few years confirmed that most of the mass of the proton and neutron results from the energy carried by their quark constituents in accordance with Einstein's formula E=mc2.

However, a small contribution from the electromagnetic field surrounding the electrically charged proton should make it about 0.1 percent more massive than the neutral neutron. The fact that the neutron mass is measured to be larger is evidently due to the different masses of the quarks, as Fodor and his team have now shown in extremely complex simulations.

For the calculations, the team developed a new class of simulation techniques combining the laws of quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine the effects of electromagnetic interactions. By controlling all error sources, the scientists suc-cessfully demonstrated how finely tuned the forces of nature are.

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations allocate computation time on JUQUEEN to users in a competitive process.

"Only using world-class computers, such as those available to the science community at Forschungszentrum Jülich, was it possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well as by the computing centres in Garching (LRZ) and Stuttgart (HLRS).

The results of this work by Fodor's team of physicists from Bergische Universität Wuppertal, Centre de Physique Théorique de Marseille, Eötvös University Budapest, and Forschungszentrum Jülich open the door to a new generation of simulations that will be used to determine the properties of quarks, gluons, and nuclear particles. According to Professor Kálmán Szabó from Forschungszentrum Jülich, "In future, we will be able to test the standard model of elementary particle physics with a tenfold increase in precision, which could possibly enable us to identify effects that would help us to uncover new physics beyond the standard model."

"Forschungszentrum Jülich is supporting the work of excellent researchers in many areas of science with its supercomputers. Basic research such as elementary particle physics is an area where methods are forged, and the resulting tools are also welcomed by several other users," says Prof. Dr. Sebastian M. Schmidt, member of the Board of Directors at Jülich who has supported and encouraged these scientific activities for years.

Media Contact

Tobias Schloesser
t.schloesser@fz-juelich.de
49-246-161-4771

http://www.fz-juelich.de 

Tobias Schloesser | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>