Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s smallest resistances

06.03.2015

Scientists investigate voltage drop with sub-nanometer resolution

Scientists from the Universities of Göttingen and Erlangen have made an important step towards a deeper understanding of smallest resistances. Using a scanning tunnelling microscope, the researchers succeeded in resolving the spatial extent of a voltage drop with sub-nanometer resolution for the first time. Their results were published in Nature Communications.


Electron transport in graphene: The picture shows the voltage drop colour-coded at the transition from monolayer graphene to bilayer graphene. The arrows indicate the electrons' movement.

Photo: University of Göttingen

The physicists investigated the relationship between the voltage drop and resistance on the atomic scale. As their sample system they used graphene, a single layer of hexagonally oriented carbon atoms.

In their experiments, a current-carrying layer of graphene showed the expected linear voltage drop in defect-free regions of the sample. This is in contrast to the behaviour at local defects, for example the transition between layers: These transitions form barriers where the electrons are reflected, which leads to an abrupt voltage drop.

“Our findings show that the voltage drop is much greater in size than the actual defect,” explains doctoral candidate Philip Willke from Göttingen University’s IV. Physical Institute.

“Furthermore, we observed that the voltage drop is located almost completely in the bilayer. This problem can be compared to a highway that changes from two lanes to only one. The lane change, or in this case the change from one layer of graphene to the other, is extremely hard for the electrons.”

“Our results demonstrate that it is possible to characterise electron transport in non-equilibrium on the atomic scale and to distinguish between different scattering contributions,” adds Dr. Martin Wenderoth, head of the group.

“So far, this was only possible by theoretical calculations. Our findings will help to prove current theories and to establish a deeper understanding of electron transport itself.”

Original publication: Philip Willke et al. Spatial extent of a Landauer residual-resistivity dipole in graphene quantified by scanning tunnelling potentiometry. Nature Communications 2015. Doi: 10.1038/ncomms7399.

Contact:
Dr. Martin Wenderoth
University of Göttingen
Faculty of Physics – IV. Physical Institute
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone +49 551 39-9367 or -4536
Email: wenderoth@ph4.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/500611.html

Thomas Richter | Georg-August-Universität Göttingen

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>