Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s smallest resistances

06.03.2015

Scientists investigate voltage drop with sub-nanometer resolution

Scientists from the Universities of Göttingen and Erlangen have made an important step towards a deeper understanding of smallest resistances. Using a scanning tunnelling microscope, the researchers succeeded in resolving the spatial extent of a voltage drop with sub-nanometer resolution for the first time. Their results were published in Nature Communications.


Electron transport in graphene: The picture shows the voltage drop colour-coded at the transition from monolayer graphene to bilayer graphene. The arrows indicate the electrons' movement.

Photo: University of Göttingen

The physicists investigated the relationship between the voltage drop and resistance on the atomic scale. As their sample system they used graphene, a single layer of hexagonally oriented carbon atoms.

In their experiments, a current-carrying layer of graphene showed the expected linear voltage drop in defect-free regions of the sample. This is in contrast to the behaviour at local defects, for example the transition between layers: These transitions form barriers where the electrons are reflected, which leads to an abrupt voltage drop.

“Our findings show that the voltage drop is much greater in size than the actual defect,” explains doctoral candidate Philip Willke from Göttingen University’s IV. Physical Institute.

“Furthermore, we observed that the voltage drop is located almost completely in the bilayer. This problem can be compared to a highway that changes from two lanes to only one. The lane change, or in this case the change from one layer of graphene to the other, is extremely hard for the electrons.”

“Our results demonstrate that it is possible to characterise electron transport in non-equilibrium on the atomic scale and to distinguish between different scattering contributions,” adds Dr. Martin Wenderoth, head of the group.

“So far, this was only possible by theoretical calculations. Our findings will help to prove current theories and to establish a deeper understanding of electron transport itself.”

Original publication: Philip Willke et al. Spatial extent of a Landauer residual-resistivity dipole in graphene quantified by scanning tunnelling potentiometry. Nature Communications 2015. Doi: 10.1038/ncomms7399.

Contact:
Dr. Martin Wenderoth
University of Göttingen
Faculty of Physics – IV. Physical Institute
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone +49 551 39-9367 or -4536
Email: wenderoth@ph4.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/500611.html

Thomas Richter | Georg-August-Universität Göttingen

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>