Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The spectacular diversity of nanoporous crystals

05.01.2016

Scientists from the Vrije Universiteit Brussel and the Universität Leipzig have discovered a unique behavior in the transport of molecules in nanoporous materials. They disproved the validity of a decades-old unquestioned assumption and demonstrated that each individual nanoporous crystal behaves differently. This finding may radically alter future research in the field, as current conventional techniques are based on this invalid assumption. The fruits of this international collaboration have been published in the prestigious journal Nature Materials.

Nanoporous materials, like zeolites or metal-organic frameworks, contain pores with a size of less than one millionth of a (milli-)meter, in which molecules can be stored or converted into other molecules.

They are of great importance for our society, finding widespread applications, for example as environment-friendly catalysts to accelerate the chemical conversion of molecules into useful products, (and) as molecular sponges in the purification of gases and liquids, for CO2 capture or even in medical applications.

The development and improvement of such practical applications crucially depends on the understanding of the mechanisms of molecular transport within the nanopores. The rate of chemical reactions in these nanopores is largely controlled by the transport rate.

Since nanoporous crystals are constructed from identical building blocks, researchers have always believed that the mechanism and rate of molecular transport is identical for different crystals of the same family.

In their research towards the sustainable recovery and purification of bio-alcohols as an alternative for chemicals derived from petroleum, the team of Prof. Joeri Denayer and Dr. Julien Cousin-Saint-Remi (Vrije Universiteit Brussel) joined forces with the group of Professor Jörg Kärger (Universität Leipzig), to obtain fundamental insight in the transport mechanisms of alcohol molecules in the SAPO-34 nanoporous solid.

By means of advanced micro-imaging techniques, developed by Prof. Jörg Kärger, it could be visualized how alcohol molecules are migrating through individual crystals. For the first time, it was demonstrated that the transport rate varies with orders of magnitude amongst seemingly identical crystals.

This observation not only sheds a whole new light on conflicting or inconsistent results that were reported previously, but it is also of large importance with respect to the development of more efficient chemical processes.

The classical methods to study molecular transport only allow characterizing the average behavior of a large amount of crystals, which could potentially lead to erroneous conclusions with respect to the transport mechanism and material properties.

The results of this joint work may help other researchers to better understand diffusion mechanisms in nanoporous materials. The detailed study of individual crystals will contribute to the development of new and better materials.

The publication with original title “The role of crystal diversity in understanding mass transfer in nanoporous materials” can be found online on the website of the journal Nature Materials: http://dx.doi.org/10.1038/nmat4510.

For further information, please contact:
Dr. Julien Cousin-Saint-Remi
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.33.18
jcousins@vub.ac.be

Prof. Joeri F.M. Denayer
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.17.98
joeri.denayer@vub.ac.be

Prof. Jörg Kärger
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32502
kaerger@physik.uni-leipzig.de

Prof. Jürgen Haase
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32601
j.haase@physik.uni-leipzig.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Susann Huster | Universität Leipzig
Further information:
http://www.uni-leipzig.de

Further reports about: crystals nanopores nanoporous materials purification

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>