Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The spectacular diversity of nanoporous crystals

05.01.2016

Scientists from the Vrije Universiteit Brussel and the Universität Leipzig have discovered a unique behavior in the transport of molecules in nanoporous materials. They disproved the validity of a decades-old unquestioned assumption and demonstrated that each individual nanoporous crystal behaves differently. This finding may radically alter future research in the field, as current conventional techniques are based on this invalid assumption. The fruits of this international collaboration have been published in the prestigious journal Nature Materials.

Nanoporous materials, like zeolites or metal-organic frameworks, contain pores with a size of less than one millionth of a (milli-)meter, in which molecules can be stored or converted into other molecules.

They are of great importance for our society, finding widespread applications, for example as environment-friendly catalysts to accelerate the chemical conversion of molecules into useful products, (and) as molecular sponges in the purification of gases and liquids, for CO2 capture or even in medical applications.

The development and improvement of such practical applications crucially depends on the understanding of the mechanisms of molecular transport within the nanopores. The rate of chemical reactions in these nanopores is largely controlled by the transport rate.

Since nanoporous crystals are constructed from identical building blocks, researchers have always believed that the mechanism and rate of molecular transport is identical for different crystals of the same family.

In their research towards the sustainable recovery and purification of bio-alcohols as an alternative for chemicals derived from petroleum, the team of Prof. Joeri Denayer and Dr. Julien Cousin-Saint-Remi (Vrije Universiteit Brussel) joined forces with the group of Professor Jörg Kärger (Universität Leipzig), to obtain fundamental insight in the transport mechanisms of alcohol molecules in the SAPO-34 nanoporous solid.

By means of advanced micro-imaging techniques, developed by Prof. Jörg Kärger, it could be visualized how alcohol molecules are migrating through individual crystals. For the first time, it was demonstrated that the transport rate varies with orders of magnitude amongst seemingly identical crystals.

This observation not only sheds a whole new light on conflicting or inconsistent results that were reported previously, but it is also of large importance with respect to the development of more efficient chemical processes.

The classical methods to study molecular transport only allow characterizing the average behavior of a large amount of crystals, which could potentially lead to erroneous conclusions with respect to the transport mechanism and material properties.

The results of this joint work may help other researchers to better understand diffusion mechanisms in nanoporous materials. The detailed study of individual crystals will contribute to the development of new and better materials.

The publication with original title “The role of crystal diversity in understanding mass transfer in nanoporous materials” can be found online on the website of the journal Nature Materials: http://dx.doi.org/10.1038/nmat4510.

For further information, please contact:
Dr. Julien Cousin-Saint-Remi
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.33.18
jcousins@vub.ac.be

Prof. Joeri F.M. Denayer
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.17.98
joeri.denayer@vub.ac.be

Prof. Jörg Kärger
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32502
kaerger@physik.uni-leipzig.de

Prof. Jürgen Haase
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32601
j.haase@physik.uni-leipzig.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Susann Huster | Universität Leipzig
Further information:
http://www.uni-leipzig.de

Further reports about: crystals nanopores nanoporous materials purification

More articles from Physics and Astronomy:

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>