Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The spectacular diversity of nanoporous crystals

05.01.2016

Scientists from the Vrije Universiteit Brussel and the Universität Leipzig have discovered a unique behavior in the transport of molecules in nanoporous materials. They disproved the validity of a decades-old unquestioned assumption and demonstrated that each individual nanoporous crystal behaves differently. This finding may radically alter future research in the field, as current conventional techniques are based on this invalid assumption. The fruits of this international collaboration have been published in the prestigious journal Nature Materials.

Nanoporous materials, like zeolites or metal-organic frameworks, contain pores with a size of less than one millionth of a (milli-)meter, in which molecules can be stored or converted into other molecules.

They are of great importance for our society, finding widespread applications, for example as environment-friendly catalysts to accelerate the chemical conversion of molecules into useful products, (and) as molecular sponges in the purification of gases and liquids, for CO2 capture or even in medical applications.

The development and improvement of such practical applications crucially depends on the understanding of the mechanisms of molecular transport within the nanopores. The rate of chemical reactions in these nanopores is largely controlled by the transport rate.

Since nanoporous crystals are constructed from identical building blocks, researchers have always believed that the mechanism and rate of molecular transport is identical for different crystals of the same family.

In their research towards the sustainable recovery and purification of bio-alcohols as an alternative for chemicals derived from petroleum, the team of Prof. Joeri Denayer and Dr. Julien Cousin-Saint-Remi (Vrije Universiteit Brussel) joined forces with the group of Professor Jörg Kärger (Universität Leipzig), to obtain fundamental insight in the transport mechanisms of alcohol molecules in the SAPO-34 nanoporous solid.

By means of advanced micro-imaging techniques, developed by Prof. Jörg Kärger, it could be visualized how alcohol molecules are migrating through individual crystals. For the first time, it was demonstrated that the transport rate varies with orders of magnitude amongst seemingly identical crystals.

This observation not only sheds a whole new light on conflicting or inconsistent results that were reported previously, but it is also of large importance with respect to the development of more efficient chemical processes.

The classical methods to study molecular transport only allow characterizing the average behavior of a large amount of crystals, which could potentially lead to erroneous conclusions with respect to the transport mechanism and material properties.

The results of this joint work may help other researchers to better understand diffusion mechanisms in nanoporous materials. The detailed study of individual crystals will contribute to the development of new and better materials.

The publication with original title “The role of crystal diversity in understanding mass transfer in nanoporous materials” can be found online on the website of the journal Nature Materials: http://dx.doi.org/10.1038/nmat4510.

For further information, please contact:
Dr. Julien Cousin-Saint-Remi
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.33.18
jcousins@vub.ac.be

Prof. Joeri F.M. Denayer
Department of Chemical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Elsene, Belgium
+32.2.629.17.98
joeri.denayer@vub.ac.be

Prof. Jörg Kärger
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32502
kaerger@physik.uni-leipzig.de

Prof. Jürgen Haase
Fakultät für Physik und Geowissenschaften, Universität Leipzig
Linnéstrasse 5, 04103 Leipzig, Germany
+49.341.97.32601
j.haase@physik.uni-leipzig.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Susann Huster | Universität Leipzig
Further information:
http://www.uni-leipzig.de

Further reports about: crystals nanopores nanoporous materials purification

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>