Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The random raman laser: A new light source for the microcosmos

05.05.2015

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a target, allowing for rapid image acquisition. However, traditional lasers come with a significant disadvantage in that they produce images with blurred speckle patterns -- a visual artifact that arises because of a property of traditional lasers called "high spatial coherence."


False color images of the interference pattern produced by a double slit for, (A), random Raman laser emission, (B), elastically scattered light and, (C), Helium-Neon laser emission. Strobe photography images of microcavitation bubbles forming, (D), before and, (E),\ after melanasomes are irradiated with 0.625 J/cm2 at 1064 nm.

Credit: (A)-(C) Brett Hokr/ Texas A&M University, College Station, TX (D) and (E) Morgan Schmit/Optical Radiation Branch, Joint Base San Antonio, Fort Sam Houston, TX

These speckles greatly reduce image quality in wide-field microscopy, a common technique for making broad swath images of the whole side of a cell or some other part of the microscopic world in order to understand its intricate inner workings.

To solve this problem, scientists have sought a laser-like light source with "low spatial coherence." Low spatial coherence means that the electric fields at different positions in the light beam do not oscillate in lockstep, unlike traditional lasers.

Now a team of researchers at Texas A&M University has done just that, demonstrating for the first time that a newly emerging technique known as random Raman lasing emission can produce a bright, speckle-free, strobe light source with potential application in high-speed wide-field microscopy.

"The random Raman laser is unlike any existing laser light source," said Brett Hokr, a physicist at Texas A&M University who led the research. "We found that random Raman lasing emission has a low level of spatial coherence. The emission can be used to produce a wide-field speckle-free quality image with a strobe time on the order of a nanosecond. This new, bright, fast, narrowband, low-coherence light source opens the door to many exciting new applications in bio-imaging such as high-speed, wide-field microscopy."

Random Raman Lasing: A Newly Emerging Technique Random Raman lasing causes a diffuse material such as a powder to emit laser light. Different from traditional lasers that work by bouncing photons back and forth in a laser cavity, random Raman lasing happens when the light bounces among the powder particles long enough for amplification to occur.

According to Hokr, random Raman laser emission is a pulsed emission with a temporal duration on the scale of single nanoseconds and in a narrow spectrum of about 0.1 nanometer, which can emit a million times more photons per unit time per unit wavelength than any other conventional light source, and should have sufficient intensity to allow scientists to acquire a full two-dimensional fluorescent image in a single pulse of the laser.

Hokr's team conducted the first spatial coherence measurement of the random Raman laser in two ways -- initially using a classic set-up known as Young's double slit experiment. Barium sulfate power was pumped with 530 microjoule, 50 picosecond laser pulses to generate random lasing that later passed through a double slit, and the team captured images of the interference patterns.

The researchers observed that those interference patterns were barely discernible, indicating a very low degree of spatial coherence. To further quantify the overall spatial coherence, they measured something known as the speckle contrast ratio, which gauges the statistical properties of the emission. These measurements were consistent in confirming the presence of a low level of coherence.

To further demonstrate that this low coherence truly leads to a speckle-free image, the researchers produced a full-frame, speckle-free microscopic image showing the formation of a cavitation bubble from melanosomes from a several-nanosecond laser pulse at 1064 nanometer radiation.

###

About the Presentation

The presentation, "Accurately Simulating Focusing Beams using Monte Carlo Techniques," by Brett H. Hokr; Joel Bixler; Gabe Elpers; Byron Zollars; Robert Thomas; Vladislav Yakovlev; Marlan O. Scully, will take place from 18:00 - 20:00, Tuesday, 12 May 2015, in the San Jose Convention Center, San Jose, California, USA.

Media Registration: A media room for credentialed press and analysts will be located on-site in the San Jose Convention Center, 11-14 May 2015. Media interested in attending the event should register on the CLEO website media center: Media Center.

About CLEO

With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) is the premier international forum for scientific and technical optics, uniting the fields of lasers and opto-electronics by bringing together all aspects of laser technology, from basic research to industry applications. CLEO: Expo showcases the latest products and applications from more than 300 participating companies from around the world, providing hands-on demonstrations of the latest market innovations and applications. The Expo also offers valuable on-floor programming, including Market Focus and the Technology Transfer program.

Managed by The Optical Society (OSA) and sponsored by the American Physical Society's (APS) Laser Science Division, IEEE Photonics Society and OSA, CLEO provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the event website at http://www.cleoconference.org. CLEO 2015 takes place 10-15 May 2015 at the San Jose Convention Center, San Jose, California, USA. Follow developments and updates on CLEO 2015 on Twitter @CLEOConf, #CLEO15.

Media Contact

Rebecca B. Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca B. Andersen | EurekAlert!

Further reports about: Convention Expo Optical laser light lasers light source microscopic significant spatial

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>