Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The random raman laser: A new light source for the microcosmos

05.05.2015

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a target, allowing for rapid image acquisition. However, traditional lasers come with a significant disadvantage in that they produce images with blurred speckle patterns -- a visual artifact that arises because of a property of traditional lasers called "high spatial coherence."


False color images of the interference pattern produced by a double slit for, (A), random Raman laser emission, (B), elastically scattered light and, (C), Helium-Neon laser emission. Strobe photography images of microcavitation bubbles forming, (D), before and, (E),\ after melanasomes are irradiated with 0.625 J/cm2 at 1064 nm.

Credit: (A)-(C) Brett Hokr/ Texas A&M University, College Station, TX (D) and (E) Morgan Schmit/Optical Radiation Branch, Joint Base San Antonio, Fort Sam Houston, TX

These speckles greatly reduce image quality in wide-field microscopy, a common technique for making broad swath images of the whole side of a cell or some other part of the microscopic world in order to understand its intricate inner workings.

To solve this problem, scientists have sought a laser-like light source with "low spatial coherence." Low spatial coherence means that the electric fields at different positions in the light beam do not oscillate in lockstep, unlike traditional lasers.

Now a team of researchers at Texas A&M University has done just that, demonstrating for the first time that a newly emerging technique known as random Raman lasing emission can produce a bright, speckle-free, strobe light source with potential application in high-speed wide-field microscopy.

"The random Raman laser is unlike any existing laser light source," said Brett Hokr, a physicist at Texas A&M University who led the research. "We found that random Raman lasing emission has a low level of spatial coherence. The emission can be used to produce a wide-field speckle-free quality image with a strobe time on the order of a nanosecond. This new, bright, fast, narrowband, low-coherence light source opens the door to many exciting new applications in bio-imaging such as high-speed, wide-field microscopy."

Random Raman Lasing: A Newly Emerging Technique Random Raman lasing causes a diffuse material such as a powder to emit laser light. Different from traditional lasers that work by bouncing photons back and forth in a laser cavity, random Raman lasing happens when the light bounces among the powder particles long enough for amplification to occur.

According to Hokr, random Raman laser emission is a pulsed emission with a temporal duration on the scale of single nanoseconds and in a narrow spectrum of about 0.1 nanometer, which can emit a million times more photons per unit time per unit wavelength than any other conventional light source, and should have sufficient intensity to allow scientists to acquire a full two-dimensional fluorescent image in a single pulse of the laser.

Hokr's team conducted the first spatial coherence measurement of the random Raman laser in two ways -- initially using a classic set-up known as Young's double slit experiment. Barium sulfate power was pumped with 530 microjoule, 50 picosecond laser pulses to generate random lasing that later passed through a double slit, and the team captured images of the interference patterns.

The researchers observed that those interference patterns were barely discernible, indicating a very low degree of spatial coherence. To further quantify the overall spatial coherence, they measured something known as the speckle contrast ratio, which gauges the statistical properties of the emission. These measurements were consistent in confirming the presence of a low level of coherence.

To further demonstrate that this low coherence truly leads to a speckle-free image, the researchers produced a full-frame, speckle-free microscopic image showing the formation of a cavitation bubble from melanosomes from a several-nanosecond laser pulse at 1064 nanometer radiation.

###

About the Presentation

The presentation, "Accurately Simulating Focusing Beams using Monte Carlo Techniques," by Brett H. Hokr; Joel Bixler; Gabe Elpers; Byron Zollars; Robert Thomas; Vladislav Yakovlev; Marlan O. Scully, will take place from 18:00 - 20:00, Tuesday, 12 May 2015, in the San Jose Convention Center, San Jose, California, USA.

Media Registration: A media room for credentialed press and analysts will be located on-site in the San Jose Convention Center, 11-14 May 2015. Media interested in attending the event should register on the CLEO website media center: Media Center.

About CLEO

With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) is the premier international forum for scientific and technical optics, uniting the fields of lasers and opto-electronics by bringing together all aspects of laser technology, from basic research to industry applications. CLEO: Expo showcases the latest products and applications from more than 300 participating companies from around the world, providing hands-on demonstrations of the latest market innovations and applications. The Expo also offers valuable on-floor programming, including Market Focus and the Technology Transfer program.

Managed by The Optical Society (OSA) and sponsored by the American Physical Society's (APS) Laser Science Division, IEEE Photonics Society and OSA, CLEO provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the event website at http://www.cleoconference.org. CLEO 2015 takes place 10-15 May 2015 at the San Jose Convention Center, San Jose, California, USA. Follow developments and updates on CLEO 2015 on Twitter @CLEOConf, #CLEO15.

Media Contact

Rebecca B. Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca B. Andersen | EurekAlert!

Further reports about: Convention Expo Optical laser light lasers light source microscopic significant spatial

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>