Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The puzzle of the origin of elements in the universe

16.12.2015

The LUNA experiment at the INFN Gran Sasso National Laboratory in Italy has observed a rare nuclear reaction that occurs in giant red stars, a type of star in which our sun will also evolve. This is the first direct observation of sodium production in these stars, one of the nuclear reactions that is fundamental for the formation of the elements that make up the universe. The study has been published in Physical Review Letters.

LUNA (Laboratory for Underground Nuclear Astrophysics) is a compact linear accelerator. It is the only one in the world installed in an underground facility, shielded against cosmic rays.


Dr. Rosanna Depalo (HZDR) and Dr. Francesca Cavanna (left) at the LUNA experiment in the INFN Gran Sasso Laboratory. Foto: R. Depalo, INFN/HZDR.

Photo: R. Depalo (INFN/HZDR)

The experiment aims to study the nuclear reactions that take place inside stars where, like in an intriguing and amazing cosmic kitchen, the elements that make up matter are formed and then driven out by gigantic explosions and scattered as cosmic dust.

For the first time, this experiment has observed three "resonances" in the neon-sodium cycle responsible for sodium production in red giants and energy generation (the 22Ne(p,g)23Na. In the same way as in acoustics, a "resonance" is a particular condition that makes the reaction inside the star extremely likely.

LUNA recreates the energy ranges of nuclear reactions and, with its accelerator, goes back in time to one hundred million years after the Big Bang, to the formation of the first stars and the start of those processes that gave rise to mysteries we still do not fully understand, such as the huge variety in the quantities of the elements in the universe.

"This result is an important piece in the puzzle of the origin of the elements in the universe, which the experiment has been studying for the last 25 years", remarked Paolo Prati, spokesperson for the LUNA experiment.

"Stars generate energy and at the same time assemble atoms through a complex system of nuclear reactions. A very small number of these reactions have been studied in the conditions under which they occur inside stars, and a large proportion of those few cases have been observed with this accelerator".

LUNA uses a compact linear accelerator in which hydrogen and helium beams are accelerated and made to collide with a target (in this case, a neon isotope), to produce other particles. Special detectors obtain images of the products of the collisions and identify the reaction to be examined. These extremely rare processes can only be detected in conditions of cosmic silence. The rock surrounding the underground facility at the Gran Sasso National Laboratory shields the experiment against cosmic rays and protects its measurements.

LUNA is an international collaboration involving some 50 Italian, German, Scottish and Hungarian researchers from the National Institute for Nuclear Physics in Italy, the Helmholtz-Zentrum Dresden-Rossendorf in Germany, the MTA-ATOMKI in Hungary and the School of Physics and Astronomy of the University of Edinburgh in the UK.

Contact Details:

Dr. Daniel Bemmerer
Institute of Radiation Physics at HZDR, Germany
Phone +49 351 260-23581
Mail: d.bemmerer@hzdr.de

Prof. Paolo Prati
LUNA Spokesperson, INFN
Mobile: + 39 3493951491
Mail prati@ge.infn.it

Eleonora Cossi
INFN - Communications Office
Phone +39 06.6868162 | +39 345.2954623
Mail eleonora.cossi@presid.infn.it

Roberta Antolini
LNGS - External Relations and Scientific Information
Phone +39 0862 437265/450
Mail: antolini@lngs.infn.it

Christine Bohnet
HZDR - Press officer
Phone +49 351 260-2450
Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400, 01328 Dresden, Germany

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It focuses its research on the following topics:
• How can energy and resources be used efficiently, safely, and sustainably?
• How can malignant tumors be visualized and characterized more precisely and treated effectively?
• How do matter and materials behave in strong fields and in the smallest dimensions?
Several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users.
The HZDR has been a member of the Helmholtz Association, Germany’s largest research organization, since 2011. It has four locations (Dresden, Leipzig, Freiberg, Grenoble) and employs about 1,100 people – approximately 500 of whom are scientists, including 150 doctoral candidates.

Weitere Informationen:

http://www.hzdr.de/presse/luna
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.252501

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>