Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The moon is front and center during a total solar eclipse

24.07.2017

In the lead-up to a total solar eclipse, most of the attention is on the sun, but Earth's moon also has a starring role.

"A total eclipse is a dance with three partners: the moon, the sun and Earth," said Richard Vondrak, a lunar scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It can only happen when there is an exquisite alignment of the moon and the sun in our sky."


In the lead-up to a total solar eclipse, most of the attention is on the sun, but Earth's moon also has a starring role.

Credit: NASA's Goddard Space flight Center/SVS

During this type of eclipse, the moon completely hides the face of the sun for a few minutes, offering a rare opportunity to glimpse the pearly white halo of the solar corona, or faint outer atmosphere. This requires nearly perfect alignment of the moon and the sun, and the apparent size of the moon in the sky must match the apparent size of the sun.

On average, a total solar eclipse occurs about every 18 months somewhere on Earth, although at any particular location, it happens much less often.

The total eclipse on Aug. 21, 2017, will be visible within a 70-mile-wide path that will cross 14 states in the continental U.S. from Oregon to South Carolina. Along this path of totality, the umbra, or dark inner shadow, of the moon will travel at speeds of almost 3,000 miles per hour in western Oregon to 1,500 miles per hour in South Carolina.

In eclipse maps, the umbra is often depicted as a dark circle or oval racing across the landscape. But a detailed visualization created for this year's eclipse reveals that the shape is more like an irregular polygon with slightly curved edges, and it changes as the shadow moves along the path of totality.

"With this new visualization, we can represent the umbral shadow with more accuracy by accounting for the influence of elevation at different points on Earth, as well as the way light rays stream through lunar valleys along the moon's ragged edge," said NASA visualizer Ernie Wright at Goddard.

This unprecedented level of detail was achieved by coupling 3-D mapping of the moon's surface, done by NASA's Lunar Reconnaissance Orbiter, or LRO, with Earth elevation information from several datasets.

LRO's mapping of the lunar terrain also makes it possible to predict very accurately when and where the brilliant flashes of light called Baily's Beads or the diamond-ring effect will occur. These intense spots appear along the edge of the darkened disk just before totality, and again just afterward, produced by sunlight peeking through valleys along the uneven rim of the moon.

In the very distant future, the spectacular shows put on by total solar eclipses will cease. That's because the moon is, on average, slowly receding from Earth at a rate of about 1-1/2 inches, or 4 centimeters, per year. Once the moon moves far enough away, its apparent size in the sky will be too small to cover the sun completely.

"Over time, the number and frequency of total solar eclipses will decrease," said Vondrak. "About 600 million years from now, Earth will experience the beauty and drama of a total solar eclipse for the last time."

###

NASA's Goddard Space Flight Center in Greenbelt, Md.

For more information about the upcoming 2017 solar eclipse, visit: https://eclipse2017.nasa.gov

For more information about NASA's Lunar Reconnaissance Orbiter, visit: http://www.nasa.gov/lro

Video link: https://youtu.be/jxanWTR8-yM

Elizabeth Zubritsky | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>