Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long and short of plasma turbulence

11.11.2015

Scientists use supercomputer to model plasma turbulence, and solve a 50-year-old mystery

For more than 60 years, fusion scientists have tried to use "magnetic bottles" of various shapes and sizes to confine extremely hot plasmas, with the goal of producing practical fusion energy. But turbulence in the plasma has, so far, confounded researchers' ability to efficiently contain the intense heat within the core of the fusion device, reducing performance. Now, scientists have used one of the world's largest supercomputers to reveal the complex interplay between two types of turbulence known to occur in fusion plasmas, paving the way for improved fusion reactor design.


Plasma turbulence in conditions with long wavelength turbulence (top) are compared with those exhibiting long and short wavelength turbulence (bottom). The top condition is representative of the standard model. The bottom model demonstrates the clear impact of capturing long and short wavelength turbulence simultaneously.

Credit: N. T. Howard

Years of careful research have shown that fusion devices are plagued by plasma turbulence. The turbulence quickly pushes heat from the hot fusion core to the edge, cooling the plasma in the process and reducing the amount of fusion energy produced.

While turbulence has been identified as the culprit, the measured heat losses in many fusion devices are still commonly higher than scientists' leading theories of turbulence. Thus, even after more than half a century of research, the origin of this "anomalous" heat loss in experimental fusion plasmas remained a mystery.

To tackle this problem, scientists had to create a model that captured the different types of turbulence known to exist in fusion plasmas. This turbulence can roughly be grouped into two categories: long wavelength turbulence and short wavelength turbulence.

Most prior research has assumed a dominant role for long wavelength turbulence, often neglecting short wavelength turbulence altogether. Although scientists were aware they were missing the contributions of the small eddies, simulation of all the turbulence together was too challenging to undertake...until now.

Using one of the world's largest supercomputers (the NERSC Edison system) and experimental data obtained from the Alcator C-Mod tokamak, scientists from the University of California, San Diego and the Massachusetts Institute of Technology recently performed the most physically comprehensive simulations of plasma turbulence to date.

These simulations capture the spatial and temporal dynamics of long and short wavelength turbulence simultaneously, revealing never before observed physics phenomena. Contrary to many proposed theories, long wavelength turbulence was found to coexist with short wavelength turbulence, in the form of finger-like structures known as "streamers" (Figure 1).

In many experimental conditions, the large scale turbulent eddies were found to interact strongly with the short wavelength turbulence, transferring energy back and forth. Most significantly, these simulations demonstrated that interactions between long and short wavelength turbulence can increase heat losses tenfold above the standard model, matching a wide variety of experimental measurements, and likely explaining the mystery of "anomalous" heat loss in plasmas.

Pushing the limits of supercomputing capabilities has changed scientists' understanding of how heat is pushed out of fusion plasmas by turbulence, and may help explain the 50-year-old mystery of "anomalous" heat loss. The study, currently submitted to the journal Nuclear Fusion, required approximately 100 million CPU hours to perform. For comparison, this is approximately the same as the latest MacBook Pro running for the next 3,000 years.

Ultimately, these results may be used to inform the design of fusion reactors, allowing for improved performance, and hopefully pushing us closer to the goal of practical fusion energy.

###

Contact: N. T. Howard, (617) 253-4785, nthoward@psfc.mit.edu

Abstracts: NI3.00001 The Role of ITG/TEM/ETG Cross-Scale Coupling in Explaining Experimental Electron Heat Flux and Profile Stiffness
9:30 AM-10:00 AM, Wednesday, November 18, 2015
Session NI3: MFE Transport and Turbulence
9:30 AM-12:30 PM, Wednesday, November 18, 2015
Room: Oglethorpe Auditorium

Media Contact

Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320

 @APSphysics

http://www.aps.org 

Saralyn Stewart | EurekAlert!

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>