Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy

01.06.2015

The director of the Large Synoptic Survey Telescope (LSST) joins an astrophysicist and a theoretical physicist in a discussion about how LSST will delve into the 'dark universe' by taking an unprecedentedly enormous scan of the sky

At a traditional stone-laying ceremony outside La Serena, Chile on April 14th, construction officially began of the Large Synoptic Survey Telescope (LSST). This ambitious international astrophysics project is slated to start scanning the heavens in 2022. When it does, LSST should open up the "dark universe" of dark matter and dark energy--the unseen substance and force, respectively, composing 95 percent of the universe's mass and energy--as never before.


This is an artist's rendering of the proposed architecture for the Large Synoptic Survey Telescope at its site on the El Penon peak of Cerro Pachon in Chile.

Credit: LSST

On April 2, 2015, the Director of LSST, Steven Kahn, along with astrophysicist Sarah Bridle and theoretical physicist Hitoshi Murayama, spoke with The Kavli Foundation about how LSST's sweeping search for dark matter and dark energy will answer fundamental questions about our universe's make-up. In the process, LSST will help answer vexing questions about the universe's history and possibly reveal its ultimate fate.

"In terms of how much light it will collect and its field of view, LSST is about ten times bigger than any other survey telescope either planned or existing," said Kahn, the Cassius Lamb Kirk Professor in the Natural Sciences in the Kavli Institute for Particle Astrophysics and Cosmology of Physics (KIPAC) at Stanford University.

LSST will feature an 8.4-meter diameter mirror and a 3.2 gigapixel camera, the biggest digital camera ever built. Every few days, the telescope will survey the entire Southern Hemisphere's sky, hauling in 30 terabytes of data nightly. After just its first month of operations, LSST's camera will have observed more of the universe than all previous astronomical surveys combined.

This capability to rake in data, extended over a ten-year observing run, will yield a staggering amount of astronomical information. The telescope should observe some 20 billion galaxies and many tens of thousands of supernovae. In addition, LSST will help map the stars composing the Milky Way and spy reams of asteroids passing near Earth.

The galaxy and supernova observations, along with other data, will offer some of the most stringent tests of dark matter and dark energy ever conducted. Solving the riddle of dark energy will not only deepen our understanding of our universe's past, but also sketch out its future.

"Dark energy is accelerating the expansion of the universe and ripping it apart," said Murayama, the Director of the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) at the University of Tokyo and a professor at the Berkeley Center for Theoretical Physics at the University of California, Berkeley. "The questions we are asking are: Where is the universe going? What is its fate? Is it getting completely ripped apart at some point? Does the universe end? Or does it go forever?"

Murayama continued: "To understand these questions, it's like trying to understand how quickly the population of a given country is aging. You can't understand the trend of where the country is going just by looking at a small number of people. You have to do a census of the entire population. In a similar way, you need to really look at a vast amount of galaxies so you can understand the trend of where the universe is going. We are taking a cosmic census with LSST."

To analyze this census, researchers will chiefly rely on a technique called gravitational lensing. Foreground galaxies and their associated dark matter gravitationally bend the light streaming from background galaxies in an observable, measureable way. Gauging this gravitational lensing distortion in LSST's vast image collection will speak to the strength of dark energy, which is accelerating the expansion of the history, at different times in cosmic history.

"With the data, we're going to be able to make a three-dimensional map of the dark matter in the universe using gravitational lensing," said Bridle, a professor of astrophysics in the Extragalactic Astronomy and Cosmology research group of the Jodrell Bank Center for Astrophysics in the School of Physics and Astronomy at The University of Manchester. "Then we're going to use that to tell us about how the 'clumpiness' of the universe is changing with time, which is going to tell us about dark energy."

###

Read the full conversation with Kahn, Bridle and Murayama on The Kavli Foundation website: http://www.kavlifoundation.org/science-spotlights/delving-dark-universe-large-synoptic-survey-telescope

James Cohen | EurekAlert!

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>