Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy

01.06.2015

The director of the Large Synoptic Survey Telescope (LSST) joins an astrophysicist and a theoretical physicist in a discussion about how LSST will delve into the 'dark universe' by taking an unprecedentedly enormous scan of the sky

At a traditional stone-laying ceremony outside La Serena, Chile on April 14th, construction officially began of the Large Synoptic Survey Telescope (LSST). This ambitious international astrophysics project is slated to start scanning the heavens in 2022. When it does, LSST should open up the "dark universe" of dark matter and dark energy--the unseen substance and force, respectively, composing 95 percent of the universe's mass and energy--as never before.


This is an artist's rendering of the proposed architecture for the Large Synoptic Survey Telescope at its site on the El Penon peak of Cerro Pachon in Chile.

Credit: LSST

On April 2, 2015, the Director of LSST, Steven Kahn, along with astrophysicist Sarah Bridle and theoretical physicist Hitoshi Murayama, spoke with The Kavli Foundation about how LSST's sweeping search for dark matter and dark energy will answer fundamental questions about our universe's make-up. In the process, LSST will help answer vexing questions about the universe's history and possibly reveal its ultimate fate.

"In terms of how much light it will collect and its field of view, LSST is about ten times bigger than any other survey telescope either planned or existing," said Kahn, the Cassius Lamb Kirk Professor in the Natural Sciences in the Kavli Institute for Particle Astrophysics and Cosmology of Physics (KIPAC) at Stanford University.

LSST will feature an 8.4-meter diameter mirror and a 3.2 gigapixel camera, the biggest digital camera ever built. Every few days, the telescope will survey the entire Southern Hemisphere's sky, hauling in 30 terabytes of data nightly. After just its first month of operations, LSST's camera will have observed more of the universe than all previous astronomical surveys combined.

This capability to rake in data, extended over a ten-year observing run, will yield a staggering amount of astronomical information. The telescope should observe some 20 billion galaxies and many tens of thousands of supernovae. In addition, LSST will help map the stars composing the Milky Way and spy reams of asteroids passing near Earth.

The galaxy and supernova observations, along with other data, will offer some of the most stringent tests of dark matter and dark energy ever conducted. Solving the riddle of dark energy will not only deepen our understanding of our universe's past, but also sketch out its future.

"Dark energy is accelerating the expansion of the universe and ripping it apart," said Murayama, the Director of the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) at the University of Tokyo and a professor at the Berkeley Center for Theoretical Physics at the University of California, Berkeley. "The questions we are asking are: Where is the universe going? What is its fate? Is it getting completely ripped apart at some point? Does the universe end? Or does it go forever?"

Murayama continued: "To understand these questions, it's like trying to understand how quickly the population of a given country is aging. You can't understand the trend of where the country is going just by looking at a small number of people. You have to do a census of the entire population. In a similar way, you need to really look at a vast amount of galaxies so you can understand the trend of where the universe is going. We are taking a cosmic census with LSST."

To analyze this census, researchers will chiefly rely on a technique called gravitational lensing. Foreground galaxies and their associated dark matter gravitationally bend the light streaming from background galaxies in an observable, measureable way. Gauging this gravitational lensing distortion in LSST's vast image collection will speak to the strength of dark energy, which is accelerating the expansion of the history, at different times in cosmic history.

"With the data, we're going to be able to make a three-dimensional map of the dark matter in the universe using gravitational lensing," said Bridle, a professor of astrophysics in the Extragalactic Astronomy and Cosmology research group of the Jodrell Bank Center for Astrophysics in the School of Physics and Astronomy at The University of Manchester. "Then we're going to use that to tell us about how the 'clumpiness' of the universe is changing with time, which is going to tell us about dark energy."

###

Read the full conversation with Kahn, Bridle and Murayama on The Kavli Foundation website: http://www.kavlifoundation.org/science-spotlights/delving-dark-universe-large-synoptic-survey-telescope

James Cohen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>