Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The diversity of alien colors: How to recognize life on distant planets

17.03.2015

Astronomers and biologists led by MPIA graduate student Siddharth Hegde have measured the "chemical fingerprints" of 137 different species of microorganisms. This could help future astronomers to recognize life on the surface of exoplanets (planets outside our solar system). 

Some of the microorganisms hail from the most extreme environments on Earth; taken together, the samples should allow for a (cautious) estimate of the diversity of biological colors on planets other than Earth. The results are available in an online catalogue and have also been published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).


Eight of the 137 microorganism samples with diverse colors, used to measure biosignatures for the catalog. For each panel: top: regular photograph of the sample, bottom: micrograph

Image: S. Hegde et al. / MPIA

Astronomers are gearing up for a new phase of research on exoplanets (planets outside our solar system), teaming up with biologists to formulate search strategies for life on these distant planets. So far, these efforts have focused on what are known as indirect biosignatures, such as byproducts of life that could be detectable in a host planet's atmosphere.

But if the surface of an exoplanet were dominated by one particular life form, a more direct form of detection might be possible: a detection based on light reflected by that life form, taking on a characteristic tint in the process.

We observe planets by studying starlight reflected off their atmospheres or surfaces. When Jupiter or Venus shines brightly in the night sky, the light you see is sunlight reflected by those planets. Alien astronomers making detailed observations of Earth would notice a greenish tint as sunlight reflected by trees and other vegetation reaches their telescopes.

Similarly, the presence of an alien organism covering large swathes of an exoplanet surface could be measured directly through the imprint left by the organism's pigmentation, the chemical makeup that determines its color. This imprint is the reflected light's spectrum: the light split up, rainbow-light, into component colors. It is the chemical analogue of a fingerprint, allowing for the identification of different types of microorganisms.

Now, a group of astronomers and biologists led by Siddharth Hegde has teamed up to explore what these fingerprints might look like and how diverse they could be. Hegde, then a graduate student at the Max Planck Institute for Astronomy, and astronomer Lisa Kaltenegger (Director of the Institute for Pale Blue Dots at Cornell University) teamed up with biologist Lynn Rothschild, postdoctoral fellow Ivan Paulino-Lima and research associate Ryan Kent, all of the NASA Ames Research Center, to explore the full range of possibilities for what chemical fingerprints – and therefore exoplanet surface biosignatures – could look like.

To this end, the team assembled cultures of 137 different species of microorganisms: 36 from existing culture collections, 100 assembled by Paulino-Lima, and one isolated by Rocco Mancinelli of the BAER Institute at Ames. A primary concern in selecting species was diversity of pigmentation: The 137 life forms span a variety of colors and are residents of a variety of environments, ranging from the Atacama desert in Chile, to seawater in Hawaii, to some old woodwork at Salt Spring in Boone’s Lick State Park, Missouri.

The team reflected light off samples from each microorganism culture, measured their chemical fingerprints, and assembled their findings in an online catalog. This biosignature catalog (which consists of reflectance spectra in the optical and near-infrared wavelength regions of the electromagnetic spectrum, 0.35-2.5 micrometers) is the most complete and diverse to date, and the first dedicated to surface biosignatures for exoplanets.

The team has plans to collect more samples and to add more fingerprints to the catalog, in order to further enhance the diversity of the microorganisms represented. They hope that it will be helpful not only to astrobiologists, but also to astronomers who are trying to make models of planetary atmospheres.

However, even with the next generation of telescopes, detecting the fingerprints of organisms living on planetary surfaces will be highly technically challenging. At the moment, it is not possible to directly measure light from an Earth-sized planet, because this light is drowned out by the much-brighter neighboring starlight. For now, Kaltenegger says, "this (database) gives us for the first time a glimpse into the detectable signatures of the fascinating diversity of worlds that could exist out there.”

Contact information

Siddharth Hegde (lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-432
Email: hegde@mpia.de

Lisa Kaltenegger (co-author)
Institute for Pale Blue Dots, Cornell University
Phone: (+001) 607 255 35 07
Email: lkaltenegger@astro.cornell.edu

Lynn Rothschild (co-author)
NASA Ames Research Center
Phone: (+1) 650 604 65 25
Email: lynn.j.rothschild@nasa.gov

Anna Ho (public information officer)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221528-237
Email: annaho@mpia.de

Markus Pössel (public information officer)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 528-261
Email: pr@mpia.de

Background information

The results described here have been published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) as Hegde et al.: "Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life."

The authors are Siddharth Hegde (MPIA), Ivan G. Paulino-Lima (NASA Postdoctoral Program Fellow, NASA Ames Research Center), Ryan Kent (UCSC UARC at NASA Ames), Lisa Kaltenegger (MPIA and Institute for Pale Blue Dots, Cornell University), and Lynn Rothschild (NASA Ames).

This work was carried out as part of a NASA Planetary Biology Internship Award (PBI) that Hegde received in 2013. Starting in May 2015, Hegde will be a post-doctoral Research Associate at the Institute for Pale Blue Dots at Cornell University, where the biosignature database is hosted:

The biosignature catalog is online at http://biosignatures.astro.cornell.edu

Weitere Informationen:

http://www.mpia.de/news/science/2015-03-biosignatures - Online version of the press release; includes additional image material and text

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>