Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dark side of the fluffiest galaxies

24.05.2016

A team of International astronomers, led by members of the Instituto de Astrofísica de Canarias, has measured for the first time the mass of an ultra-diffuse galaxy using the Gran Telescopio CANARIAS

Galaxies, in all their forms from spirals to ellipticals from giants to dwarfs have been widely studied over the past Century. To the surprise of the scientific community last year a new type of galaxy was discovered, residing in a galactic megalopolis known as the Coma Cluster, some 300 million light years away from Earth.


This is a region of the Virgo cluster of galaxies containing the ultra-diffuse galaxy VCC 1287. The main image is 500 thousand light years across, uses a negative image for contrast, and was obtained with a 10-centimetre diameter amateur telescope in Switzerland (Antares Observatory). The zoom-in colour-composite image of VCC 1287 is from the 4-metre Canada-France- Hawai'i telescope. The coloured symbols show globular star clusters targeted for orbital speed measurements with the 10-metre Gran Telescopio CANARIAS (GTC).

Credit: IAC

Even though they are very numerous, these ultradiffuse galaxies have not been noticed until now because they are very fain. Their stars as spread over a very large area, which makes it particularly difficult to distinguish them from the sky background.

"These galaxies are particularly interesting, given that the violent environment in which they are situation would have destroyged them long ago were they not protected by a large amount of dark matter" says Michael Beasley, the first author or the article published in the journal Astrophysical Journal Letters. "To test this fascinating idea was possible after identifying an ultradiffuse galaxy near enough to study in detail."

This galaxy, VCC 1287, is situated in the Virgo Cluster, some 50 million light years away, and it is surrounded by a swarm of globula clusters, which have proved the key to study its dark matter content. " Globular clusters,made up of hundreds of thousands of stars, orbit within the gravitational field of the ultradiffuse galaxy," adds Aaron Romanowsky of San José State University (USA) one of the authors of the article. "The heavier is a galaxy, the more rapidly its globular clusters move, so they can be used as a cosmic balance."

Using the Gran Telescopio CANARIAS (GTC) the team found that these globular clusters move at high velocity, pulled by a surprisingly strong gravitational field. "Even though dark matter is present in other galaxies, this is an exceptional case" concludes Beasley. "For each kilogramme of ordinary material VCC 1287 contains 3 tonnes of dark matter."

So we can say that ultradiffuse galaxies are essentially composed of dark matter, with very few stars". This conclusion gives the scientists another question "How is it possible for galaxies so diffuse and dark to exist?"

###

Article: "An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster", by Michael Beasley (IAC-ULL), Aaron J. Romanowsky (San José State University-University of California Observatories), Vincenzo Pota (INAF, Osservatorio Astronomico di Capodimonte), Ignacio Martín Navarro (IAC-ULL-University of California Observatories), David Martínez Delgado (Universitat Heidelberg), Fabian Neyer ETH Zurich) y Aaron L. Deich (San José State University), 2016, ApJ Letters, 819, L20.

Media Contact

Elena Mora
emora@iac.es

http://www.iac.es/?lang=en 

Elena Mora | EurekAlert!

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>