Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dark side of the fluffiest galaxies

24.05.2016

A team of International astronomers, led by members of the Instituto de Astrofísica de Canarias, has measured for the first time the mass of an ultra-diffuse galaxy using the Gran Telescopio CANARIAS

Galaxies, in all their forms from spirals to ellipticals from giants to dwarfs have been widely studied over the past Century. To the surprise of the scientific community last year a new type of galaxy was discovered, residing in a galactic megalopolis known as the Coma Cluster, some 300 million light years away from Earth.


This is a region of the Virgo cluster of galaxies containing the ultra-diffuse galaxy VCC 1287. The main image is 500 thousand light years across, uses a negative image for contrast, and was obtained with a 10-centimetre diameter amateur telescope in Switzerland (Antares Observatory). The zoom-in colour-composite image of VCC 1287 is from the 4-metre Canada-France- Hawai'i telescope. The coloured symbols show globular star clusters targeted for orbital speed measurements with the 10-metre Gran Telescopio CANARIAS (GTC).

Credit: IAC

Even though they are very numerous, these ultradiffuse galaxies have not been noticed until now because they are very fain. Their stars as spread over a very large area, which makes it particularly difficult to distinguish them from the sky background.

"These galaxies are particularly interesting, given that the violent environment in which they are situation would have destroyged them long ago were they not protected by a large amount of dark matter" says Michael Beasley, the first author or the article published in the journal Astrophysical Journal Letters. "To test this fascinating idea was possible after identifying an ultradiffuse galaxy near enough to study in detail."

This galaxy, VCC 1287, is situated in the Virgo Cluster, some 50 million light years away, and it is surrounded by a swarm of globula clusters, which have proved the key to study its dark matter content. " Globular clusters,made up of hundreds of thousands of stars, orbit within the gravitational field of the ultradiffuse galaxy," adds Aaron Romanowsky of San José State University (USA) one of the authors of the article. "The heavier is a galaxy, the more rapidly its globular clusters move, so they can be used as a cosmic balance."

Using the Gran Telescopio CANARIAS (GTC) the team found that these globular clusters move at high velocity, pulled by a surprisingly strong gravitational field. "Even though dark matter is present in other galaxies, this is an exceptional case" concludes Beasley. "For each kilogramme of ordinary material VCC 1287 contains 3 tonnes of dark matter."

So we can say that ultradiffuse galaxies are essentially composed of dark matter, with very few stars". This conclusion gives the scientists another question "How is it possible for galaxies so diffuse and dark to exist?"

###

Article: "An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster", by Michael Beasley (IAC-ULL), Aaron J. Romanowsky (San José State University-University of California Observatories), Vincenzo Pota (INAF, Osservatorio Astronomico di Capodimonte), Ignacio Martín Navarro (IAC-ULL-University of California Observatories), David Martínez Delgado (Universitat Heidelberg), Fabian Neyer ETH Zurich) y Aaron L. Deich (San José State University), 2016, ApJ Letters, 819, L20.

Media Contact

Elena Mora
emora@iac.es

http://www.iac.es/?lang=en 

Elena Mora | EurekAlert!

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>