Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The awakened force of a star

18.12.2015

Perfectly timed for the release of "Star Wars Episode VII: The Force Awakens", the NASA/ESA Hubble Space Telescope has imaged a cosmic double-bladed lightsabre. In the centre of the image, partially obscured by a dark Jedi-like cloak of dust, an adolescent star shoots twin jets out into space, demonstrating the fearsome forces of the Universe

This celestial lightsabre lies not in a galaxy far, far away, but within our home galaxy, the Milky Way. More precisely, it resides within a turbulent patch of space known as the Orion B molecular cloud complex, which is located just over 1350 light-years away in the constellation of Orion (The Hunter).


A cosmic lightsabre


HH 24 (ground-based view)

Bearing a striking resemblance to Darth Maul’s double-bladed lightsabre in Star Wars Episode One, the spectacular twin jets of material slicing across this incredible image are spewing out from a newly formed star that is obscured from view, cloaked by swirling dust and gas.

When stars form within giant, gaseous clouds, some of the surrounding material collapses down to form a rotating, flattened disc encircling the nascent stars, which are known as protostars. This disc is where a potential planetary system might form.

However, at this early stage, the star is mostly concerned with feeding its Jabba-like appetite. Gas from the disc rains down onto the protostar and, once nourished, the star awakens and jets of energised gas from its poles whirl out in opposite directions.

The Force is strong with these twin jets; their effect on their environment demonstrates the true power of the Dark Side with a blast stronger than one from a fully armed and operational Death Star battle station. As they stream away from one another at high speeds, supersonic shock fronts develop along the jets and heat the surrounding gas to thousands of degrees.

Furthermore, as the jets collide with the surrounding gas and dust and clear vast spaces, they create curved shock waves. These shockwaves are the hallmarks of Herbig-Haro (HH) objects — tangled, knotted clumps of nebulosity. The prominent Herbig-Haro object shown in this image is HH 24.

Just to the right of the cloaked star, a couple of bright points of light can be seen. These are young stars peeking through and showing off their own faint lightsabres. One hidden, cloaked source, only detectable in the radio part of the spectrum, has blasted a tunnel through the dark cloud in the upper left of the image with a wider outflow resembling “force lightning”.

All these jets make HH 24 the densest concentration of HH jets known in such a small region. Half of the HH jets have been spotted in this region in visible light, and about the same number in the infrared. Hubble’s observations for this image were performed in infrared light, which enabled the telescope to pierce through the gas and dust cocooning the newly-forming stars and capture a clear view of the HH objects that astronomers are looking for.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: ESA/Hubble & NASA, D. Padgett (GSFC), T. Megeath (University of Toledo), and B. Reipurth (University of Hawaii)

Contacts

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

Mathias Jäger | ESA/Hubble Photo Release
Further information:
http://www.spacetelescope.org/news/heic1526/?lang

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>