Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The "atomic second" turns 50

06.10.2017

Since 13 October 1967, the base unit of time has been based on a property of cesium atoms

The "atomic second" was the beginning of a revolutionary era: it was born as early as 1955, when the first cesium atomic clock was put into operation. In the fall of 1967, it was included in the International System of Units.


The four primary cesium atomic clocks of PTB

Physikalisch-Technische Bundesanstalt (PTB)

This was the beginning of a development which will, in all likelihood, come to an end in the fall of 2018 when the 26th General Conference on Weights and Measures (CGPM) decides that the entire International System of Units (SI) is to be based on invariable properties of nature – on fundamental constants. In this development the second came next to the meter, but in the race for accuracy it has an outstanding role: no other unit can be realized with such accuracy.

Today's cesium atomic clocks – such as the four primary clocks of the Physikalisch-Technische Bundesanstalt (PTB), which are responsible for realizing and disseminating legal time in Germany –provide the time unit with the unimaginable accuracy up to 16 decimal places!

"You are giving us a beautiful topic to meditate about: measuring the trajectory of the stars in the infinite depth of space based on the oscillation of an infinitesimally small atom." This is how poetically the then French foreign minister, Couve de Murville, expressed what was about to happen in Paris. In 1967, the scientists and politicians gathered in Paris for the 13th General Conference on Weights and Measures (CGPM) decided to re-define the second.

The decision fell on 13 October 1967: "The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium ¹³³ atom." Thus, the second was then defined based on an atomic quantum transition.

The large number in the definition stands for slightly more than 9 billion oscillations per second – a particular frequency of microwave radiation which triggers exactly this quantum transition in the outermost electron of the electron shell of the cesium atom.

This definition is still valid today. And it will not need modifying, not even for the transition to the "new SI" which is planned to happen in the fall of 2018. The formulation of the 50-year-old definition was apparently clear-sighted and sustainable.

From a historical viewpoint, time – besides length and weight – is certainly one of the most important quantities. Although both philosophers and physicists find it difficult to define exactly what time exactly is, it is part and parcel of everyday life. Time has been measured for several millennia, first via the movement of the Earth against the Sun and fixed stars.

This made it possible to determine time everywhere in a simple way. For a long time, this was much more important than being able to measure it precisely. It is only with the era of industrialization that this changed and led to an enormous acceleration in the history of time measurement.

The "timeline of time measurement" can be summarized as follows: a few millennia of sundials, a few centuries of pendulum clocks, roughly one century of quartz clocks and five decades of atomic clocks – which have become more accurate with every decade.

One of the first suggestions how to measure physical units in a modern way came from physicist James Clerk Maxwell: Back in 1870 he said that one should not rely on the measures provided by the Earth, such as the length of a day for the second and the Earth's perimeter for the meter, but rather on fundamental constants in order to define the physical units. A suitable fundamental constant for the measurement of time was noted in 1940 by American physicist Isidor Isaac Rabi, namely the frequency of the transition between two selected states of an atom.

In his opinion, the hyperfine structure states in the ¹³³Cs atom (a non-radioactive isotope of cesium) were particularly well-suited for this purpose. He was awarded the Nobel prize in 1944, and his statement that "radio frequencies in hearts of atoms would be used in most accurate of time-pieces" was published in a prominent spot of the 21 January 1945 issue of the New York Times.

Ten years later, in 1955, the first cesium atomic clock was "ticking" at the National Physical Laboratory (NPL) in the UK. At the same time, preparations for what was to become the International System of Units in 1960 were in full swing. However, the scientists involved in the committees of the Metre Convention did not yet fully trust the brave new world of the second.

For the time being, time remained the domain of astronomers: in 1960, the so-called "ephemeris second" was defined – which, with hindsight, was not particularly useful. In the fall of 1967, however, those scientists who believed in the future of atomic clocks succeeded in prevailing. From then on, the "modern" definition of the second applied.

At PTB, the first "home-made" cesium atomic clock started "ticking" in 1969. Three additional clocks have joined it since. PTB has become one of the leading "time makers"; its cesium atomic clocks make a large contribution to generating the worldwide reference time. But also the next generation of clocks – the so-called optical atomic clocks – are already showing their huge potential at PTB; but this could be the topic of a press release for an anniversary in ten years' time.

Contact
Dr. Andreas Bauch, Head of Working Group 4.42, "Dissemination of Time", phone: +49 (0)531 592-4420, E-mail: andreas.bauch@ptb.de

Further information
„50 Jahre atomare Definition der Sekunde“. PTB-Mitteilungen 3.2017 (available in German only)

Imke Frischmuth | idw - Informationsdienst Wissenschaft
Further information:
http://www.ptb.de/

Further reports about: PTB atomic clock cesium microwave radiation optical atomic clocks

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>