Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by graduate student at PPPL produces unique simulation of magnetic reconnection

11.09.2017

Jonathan Ng, a Princeton University graduate student at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), has for the first time applied a fluid simulation to the space plasma process behind solar flares northern lights and space storms. The model could lead to improved forecasts of space weather that can shut down cell phone service and damage power grids, as well as to better understanding of the hot, charged plasma gas that fuels fusion reactions.

The new simulation captures the physics of magnetic reconnection, the breaking apart and snapping together of the magnetic field lines in plasma that occurs throughout the universe. The simulations approximate kinetic effects in a fluid code, which treats plasma as a flowing liquid, to create a more detailed picture of the reconnection process.


Northern lights as seen over Norway.

Credit: Jan R. Olsen

Previous simulations used fluid codes to produce simplified descriptions of reconnection that takes place in the vastness of space, where widely separated plasma particles rarely collide. However, this collisionless environment gives rise to kinetic effects on plasma behavior that fluid models cannot normally capture.

Estimation of kinetic behavior

The new simulation estimates kinetic behavior. "This is the first application of this particular fluid model in studying reconnection physics in space plasmas," said Ng, lead author of the findings reported in August in the journal Physics of Plasmas.

Ng and coauthors approximated kinetic effects with a series of fluid equations based on plasma density, momentum and pressure. They concluded the process through a mathematical technique called "closure" that enabled them to describe the kinetic mixing of particles from non-local, or large-scale, regions. The type of closure involved was originally developed by PPPL physicist Greg Hammett and the late Rip Perkins in the context of fusion plasmas, making its application to the space plasma environment an example of fruitful cross-fertilization.

The completed results agreed better with kinetic models as compared with simulations produced by traditional fluid codes. The new simulations could extend understanding of reconnection to whole regions of space such as the magnetosphere, the magnetic field that surrounds the Earth, and provide a more comprehensive view of the universal process.

###

Coauthoring the paper were physicists Ammar Hakim of PPPL and Amitava Bhattacharjee, head of the Theory Department at PPPL and a professor of astrophysical sciences at Princeton University, together with physicists Adam Stanier and William Daughton of Los Alamos National Laboratory. Support for this work comes from the DOE Office of Science, the National Science Foundation and NASA. Computation was performed at the National Energy Research Scientific Computer Center, a DOE Office of Science User Facility, and the University of New Hampshire.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>