Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored probes for atomic force microscopes

11.08.2016

3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters

Atomic force microscopes make the nanostructure of surfaces visible. Their probes scan the investigation material with finest measurement needles. KIT has now succeeded in adapting these needles to the application.


Optimally adapted probes for atomic force microscopes can now be produced by 3-D nanoprinting at KIT.

Photos: KIT

For any measurement task, e.g. for various biological samples, a suitable measurement needle can be produced. For production, 3D laser lithography, i.e. a 3D printer of structures in the nanometer size, is applied. This success has made it to the title page of the Applied Physics Letters journal. DOI: 10.1063/1.4960386

Atomic force microscopes are used to analyze surfaces down to the atomic level. The standard probes that have been applied for this purpose so far, however, are not suited for every use. Some examination objects require a special shape or a very long probe to scan deep depressions of the material. KIT researchers have now succeeded in producing probes that are optimally adapted to special requirements.

"Biological surfaces, such as the petals of tulips or roses, frequently have very deep structures with high hills," says Hendrik Hölscher, Head of the Scanning Probe Technologies Group of KIT's Institute of Microstructure Technology. Commercially available probes typically are 15 micrometers, i.e. 15 thousandths of a millimeter, high, pyramid-shaped, and relatively wide, the physicist points out. Probes with other shapes are offered, but have to be produced manually, which makes them very expensive.

The KIT researchers have now succeeded in producing by means of 3D laser lithography tailored probes of any shape with a radius of 25 nanometers only, corresponding to 25 millionths of a millimeter. This process can be used to design and print in three dimensions any shape desired and has been known in the macroscopic area for some time already. On the nanoscale, this approach is highly complex. To obtain the three-dimensional structures desired, the researchers use the 3D lithography process developed by KIT and commercialized by Nanoscribe, a spinoff of KIT. This method is based on two-photon polymerization: Strongly focused laser pulses are applied to harden light-sensitive materials after the desired structures have been produced. The hardened structures are then separated from the surrounding, non-exposed material. "In this way, the perfect probe can be produced for any sample to be studied," Hölscher explains.

Use of this process for enhancing atomic force microscopy is reported by the researchers in the Applied Physics Letters journal under the heading "Tailored probes for atomic force microscopy fabricated by two-photon polymerization". The probes that can be produced in any shape can be placed on conventional, commercially available measurement needles and are hardly subject to wear. They are perfectly suited for studying biological samples, but also technical and optical components in the range od nanometers.

###

Research was financed by the German Research Foundation, a Starting Grant and a Senior Grant of the European Research Council (ERC), funds of the Alfried Krupp von Bohlen and Halbach Foundation, and the Federal Ministry of Education and Research under the PHOIBOS project. In addition, work was supported by the "Karlsruhe Nano-Micro Facility" (KNMF) of KIT.

Gerald Göring, Philipp-Immanuel Dietrich, Matthias Blaicher, Swati Sharma, Jan G. Korvink, Thomas Schimmel, Christian Koos, and Hendrik Hölscher: Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters. DOI 10.1063/1.4960386.

For further information, please contact: Kosta Schinarakis, PKM - Science Scout, Phone: +49 721 608 41956, Fax: +49 721 608 43658, E-mail: schinarakis@kit.edu

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

This press release is available on the internet at http://www.kit.edu.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>