Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse physicists confirm existence of rare pentaquarks discovery

15.07.2015

Discovery marks culmination of decades-long search for elusive particles

Physicists in Syracuse University's College of Arts and Sciences have confirmed the existence of two rare pentaquark states. Their discovery, which has taken place at the CERN Large Hadron Collider (LHC) in Geneva, Switzerland, is said to have major implications for the study of the structure of matter.


Syracuse University Professors Sheldon Stone and Tomasz Skwarnicki, doctoral student Nathan Jurik and former University research associate Liming Zhang are on the team that has confirmed the existence of two rare pentaquark states

Courtesy of CERN

It also puts to rest a 51-year-old mystery, in which American physicist Murray Gell-Mann famously posited the existence of fundamental subatomic constituents called quarks, which form particles such as protons. In 1964, he said that, in addition to a constituent with three quarks, there could be one with four quarks and an anti-quark, known as a "pentaquark." Until now, the search for pentaquarks has been fruitless.

"The statistical evidence of these new pentatquark states is beyond question," says Sheldon Stone, Distinguished Professor of Physics, who helped engineer the discovery. "Although some positive evidence was reported around 10 years ago, those results have been thoroughly debunked. Since then, the LHCb [Large Hadron Collider beauty] collaboration has been particularly deliberate in its study."

In addition to Stone, the research team includes other physicists with ties to Syracuse: Tomasz Skwarnicki, professor of physics; Nathan Jurik G'16, a Ph.D. student; and Liming Zhang, a former University research associate who is now an associate professor at Tsinghua University in Beijing, China.

Liming, in fact, is presenting the findings at a LHCb workshop on Wednesday, July 22, at CERN.

Stone credits Gell-Mann, a Nobel Prize-winning scientist who spent much of his career at Caltech, for postulating the existence of quarks, which are fractionally charged objects that make up matter. "He predicted that strongly interacting particles [hadrons] are formed from quark-antiquark pairs [mesons] or from three quarks [baryons]," Stone says. "This classification scheme, which has grown to encompass hadrons with four and five quarks, underscores the Standard Model, which explains the physical make-up of the Universe."

Stone says that, while his team's discovery is remarkable, it still begs many questions. One of them is the issue of how quarks bind together. The traditional answer has been a residual nuclear force, approximately 10 million times stronger than the chemical binding in atoms.

But not all bindings are created equal, Skwarnicki says. "Quarks may be tightly bound or loosely bound in a meson-baryon molecule," he explains. "The color-neutral meson and baryon feel a residual strong force [that is] similar to the one binding nucleons to form nuclei."

Adds Stone: "The theory of strong interactions is the only strongly coupled theory we have. It is particularly important for us to understand, as it not only describes normal matter, but also serves as a precursor for future theories."

The discovery is the latest in a string of successes for Syracuse's Department of Physics, which made international headlines last year, when Skwarnicki helped prove the existence of a meson named Z(4430), with two quarks and two antiquarks.

Much of this cutting-edge work occurs at CERN, where Stone oversees more than a dozen Syracuse researchers. CERN houses four multinational experiments, each with its own detector for collecting data from the LHC particle accelerator.

Media Contact

Rob Enslin
rmenslin@syr.edu
315-443-3403

http://www.syr.edu 

Rob Enslin | EurekAlert!

Further reports about: CERN Hadron LHC LHCb Large Hadron Collider implications physics

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>