Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying Curved Spaces

01.11.2016

Freiburg mathematician Sebastian Goette is awarded funding from the Simons Foundation

The Freiburg mathematician Prof. Dr. Sebastian Goette will receive a total of 650,000 US dollars in funding over the coming four years for his involvement in the project “Special Holonomy in Geometry, Analysis, and Physics.” The funding is being provided by the Simons Foundation, a non-profit organization in the USA that supports fundamental research in mathematics and natural sciences.


The sketch describes an "extra twisted connected sum," a special G2 manifold. Below it is a formula for its extended nu-invariant.

Photo: Sebastian Goette

Director of the project is the mathematics professor Robert Bryant from Duke University, USA. Other collaborators include researchers from Stony Brook University and University of California in the USA and Imperial College London, King's College London, University of Bath, and University of Oxford in England.

The project focuses on Riemannian manifolds with special holonomy. These are spaces whose curves have special properties, in particular the so-called Calabi–Yau, G2, and spin(7) manifolds. These spaces fulfill the Einstein equations in vacuum, meaning that a universe without matter could take on their shape. In physics, they are needed to establish a connection between various string theories in ten dimensions or the M-theory in eleven dimensions and the space–time continuum.

Described in Albert Einstein’s general theory of relativity, the space–time continuum is the unification of space and time in a single four-dimensional structure. The string theories and the M-theory, which was developed on the basis of the former, are regarded as a promising approach for resolving the theoretical incongruities between quantum physics and the general theory of relativity.

“From a mathematical standpoint, Riemannian manifolds with special holonomy are spaces with an especially beautiful geometry,” says Goette. The goal of the collaboration is to construct more examples of such spaces and to gain further insight on the relationship between their geometrical and physical properties as well as these properties themselves. “The Freiburg subproject focuses on G2 manifolds, which are necessary for M-theory,” says Goette. “We are studying global geometrical properties and using them to compare various constructions of G2 manifolds.”

James Simons, an American mathematician, hedge-fund manager, and CO-founder of the Simons Foundation, with his wife, Marilyn Simons, also dealt with special holonomy in his 1962 doctoral dissertation.

Further information:
http://www.simonsfoundation.org/mathematics-and-physical-science/news-announceme...

Contact:
Prof. Dr. Sebastian Goette
Institute of Mathematics
University of Freiburg
Phone: +49 (0)761/203-5571
E-Mail: sebastian.goette@math.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-10-31.153-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>