Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study questions dates for cataclysms on early moon, Earth

19.10.2015

Phenomenally durable crystals called zircons are used to date some of the earliest and most dramatic cataclysms of the solar system. One is the super-duty collision that ejected material from Earth to form the moon roughly 50 million years after Earth formed. Another is the late heavy bombardment, a wave of impacts that may have created hellish surface conditions on the young Earth, about 4 billion years ago.

Both events are widely accepted but unproven, so geoscientists are eager for more details and better dates. Many of those dates come from zircons retrieved from the moon during NASA's Apollo voyages in the 1970s.


The deformed lunar zircon at center was brought from the moon by Apollo astronauts. The fractures characteristic of meteorite impact are not seen in most lunar zircons, so the ages they record probably reflect heating by molten rock, not impact.

Photo: Apollo 17/Nicholas E. Timms

A study of zircons from a gigantic meteorite impact in South Africa, now online in the journal Geology, casts doubt on the methods used to date lunar impacts. The critical problem, says lead author Aaron Cavosie, a visiting professor of geoscience and member of the NASA Astrobiology Institute at the University of Wisconsin-Madison, is the fact that lunar zircons are "ex situ," meaning removed from the rock in which they formed, which deprives geoscientists of corroborating evidence of impact.

"While zircon is one of the best isotopic clocks for dating many geological processes," Cavosie says, "our results show that it is very challenging to use ex situ zircon to date a large impact of known age."

Although many of their zircons show evidence of shock, "once separated from host rocks, ex situ shocked zircons lose critical contextual information," Cavosie says.

The "clock" in a zircon occurs as lead isotopes accumulate during radioactive decay of uranium. With precise measurements of isotopes scientists can calculate, based on the half life of uranium, how long lead has been accumulating.

If all lead was driven off during asteroid impact, the clock was reset, and the amount of accumulated lead should record exactly how long ago the impact occurred.

Studies of lunar zircons have followed this procedure to produce dates from 4.3 billion to 3.9 billion years ago for the late heavy bombardment.

To evaluate the assumption of clock-resetting by impact, Cavosie and colleagues gathered zircons near Earth's largest impact, located in South Africa and known to have occurred 2 billion years ago. The Vredefort impact structure is deeply eroded, and approximately 90 kilometers across, says Cavosie, who is also in the Department of Applied Geology at Curtin University in Perth, Australia. "The original size, estimated at 300 kilometers diameter, is modeled to result from an impactor 14 kilometers in diameter," he says.

The researchers searched for features within the zircons that are considered evidence of impact, and concluded that most of the ages reflect when the zircons formed in magma. The zircons from South Africa are "out of place grains that contain definitive evidence of shock deformation from the Vredefort impact," Cavosie says. "However, most of the shocked grains do not record the age of the impact but rather the age of the rocks they formed in, which are about 1 billion years older."

The story is different on Earth, says zircon expert John Valley, a professor of geoscience at UW-Madison. "Most zircons on Earth are found in granite, and they formed in the same process that formed the granite. This has led people to assume that all the zircons were reset by impact, so the ages they get from the Moon are impact ages. Aaron is saying to know that, you have to apply strict criteria, and that's not what people have been doing."

The accuracy of zircon dating affects our view of Earth's early history. The poorly understood late heavy bombardment, for example, likely influenced when life arose, so dating the bombardment topped a priority list of the National Academy of Sciences for lunar studies. Did the giant craters on the moon form during a brief wave or a steady rain of impacts? "It would be nice to know which," Valley says.

"The question of what resets the zircon clock has always been very complicated. For a long time people have been saying if zircon is really involved in a major impact shock, its age will be reset, so you can date the impact. Aaron has been saying, 'Yes, sometimes, but often what people see as a reset age may not really be reset.' Zircons are the gift that keep on giving, and this will not change that, but we need to be a lot more careful in analyzing what that gift is telling us."

###

CONTACT: Aaron Cavosie, aaron.cavosie@curtin.edu.au, +0061-4-5114-9039

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

DOWNLOAD PHOTOS: https://uwmadison.box.com/cavosie

Media Contact

Aaron Cavosie
aaron.cavosie@curtin.edu.au
61-451-149-039

 @UWMadScience

http://www.wisc.edu 

Aaron Cavosie | EurekAlert!

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>