Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

String field theory could be the foundation of quantum mechanics

04.11.2014

USC scientists suggest a connection that could be a huge boost to string theory

Two USC researchers have proposed a link between string field theory and quantum mechanics that could open the door to using string field theory — or a broader version of it, called M-theory — as the basis of all physics.

"This could solve the mystery of where quantum mechanics comes from," said Itzhak Bars, USC Dornsife College of Letters, Arts and Sciences professor and lead author of the paper.

Bars collaborated with Dmitry Rychkov, his Ph.D. student at USC. The paper was published online on Oct. 27 by the journal Physics Letters.

Rather than use quantum mechanics to validate string field theory, the researchers worked backwards and used string field theory to try to validate quantum mechanics.

In their paper, which reformulated string field theory in a clearer language, Bars and Rychov showed that a set of fundamental quantum mechanical principles known as "commutation rules'' may be derived from the geometry of strings joining and splitting.

"Our argument can be presented in bare bones in a hugely simplified mathematical structure," Bars said. "The essential ingredient is the assumption that all matter is made up of strings and that the only possible interaction is joining/splitting as specified in their version of string field theory."

Physicists have long sought to unite quantum mechanics and general relativity, and to explain why both work in their respective domains. First proposed in the 1970s, string theory resolved inconsistencies of quantum gravity and suggested that the fundamental unit of matter was a tiny string, not a point, and that the only possible interactions of matter are strings either joining or splitting.

Four decades later, physicists are still trying to hash out the rules of string theory, which seem to demand some interesting starting conditions to work (like extra dimensions, which may explain why quarks and leptons have electric charge, color and "flavor" that distinguish them from one another).

At present, no single set of rules can be used to explain all of the physical interactions that occur in the observable universe.

On large scales, scientists use classical, Newtonian mechanics to describe how gravity holds the moon in its orbit or why the force of a jet engine propels a jet forward. Newtonian mechanics is intuitive and can often be observed with the naked eye.

On incredibly tiny scales, such as 100 million times smaller than an atom, scientists use relativistic quantum field theory to describe the interactions of subatomic particles and the forces that hold quarks and leptons together inside protons, neutrons, nuclei and atoms.

Quantum mechanics is often counterintuitive, allowing for particles to be in two places at once, but has been repeatedly validated from the atom to the quarks. It has become an invaluable and accurate framework for understanding the interactions of matter and energy at small distances.

Quantum mechanics is extremely successful as a model for how things work on small scales, but it contains a big mystery: the unexplained foundational quantum commutation rules that predict uncertainty in the position and momentum of every point in the universe.

"The commutation rules don't have an explanation from a more fundamental perspective, but have been experimentally verified down to the smallest distances probed by the most powerful accelerators. Clearly the rules are correct, but they beg for an explanation of their origins in some physical phenomena that are even deeper," Bars said.

The difficulty lies in the fact that there's no experimental data on the topic — testing things on such a small scale is currently beyond a scientist's technological ability.

The research was funded by the Department of Energy.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>