Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striking the right note on a magnetic violin

11.11.2015

Researchers learn to fine tune tokamak magnetic fields to mitigate damaging energy bursts

The swirling plasma in donut-shaped fusion facilities called tokamaks are subject to intense heat bursts that can damage the vessel's walls. Halting or mitigating these bursts, called Edge Localized Modes (ELMs), is a key goal of fusion research.


Researchers used the rectangular coils shown here to strike the magnetic fields that enclose the donut-shaped plasma. The colors of the plasma denote the different vibrations produced by striking the fields with external magnetic coils.

Figure courtesy of Princeton Plasma Physics Laboratory and General Atomics.

While physicists have long known that they could suppress ELMs by pushing and pulling on the plasma with magnetic fields, they frequently found that doing so destabilized the core of the plasma. The reason for this was that perturbing the plasma as they were doing always led to the same response, like producing the same note when striking a tuning fork.

Now scientists at General Atomics and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have found an effective way to mitigate ELMs without adversely affecting plasma in the core region. They were able to do this because the magnetic fields that enclose the plasma are like the strings on a violin that produce notes when struck with the fields from external magnetic coils (Figure 1). And one of these notes, the researchers found, is particularly useful for preventing ELMs.

... more about:
»Atomics »ITER »PPPL »Plasma »magnetic fields »physics

They discovered this note by pushing and pulling the fields that encircle the tokamak for two rotations instead of the standard one during experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego. This produced a very stable mode of response that can be used to help control the edge of the plasma.

The researchers verified these findings with diagnostics that showed the different plasma responses to the two-rotation perturbations. "We now understand how to pluck just the notes that sound the best, giving us the power to fine-tune our plasmas" says Nikolas Logan, who led the research team with Carlos Paz-Soldan of General Atomics and will give an invited talk on the results at the 57th Annual Meeting of the APS Division of Plasma Physics.

These finding could have important implications for ITER, the multinational tokamak being built in France. They suggest that ITER may be able to use the newly discovered results to prevent or mitigate ELMs without impacting overall performance.

###

Contact: Nikolas Logan, (858)-455-3614, nlogan@pppl.gov

Abstracts: BI2.00005 Observation, Identification, and Impact of Multi-Modal Plasma Responses to Applied Magnetic Perturbations
Session Session BI2: Pedestals
9:30 AM-12:30 PM, Monday, November 16, 2015
Room: Chatham Ballroom C

Media Contact

Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320

 @APSphysics

http://www.aps.org 

Saralyn Stewart | EurekAlert!

Further reports about: Atomics ITER PPPL Plasma magnetic fields physics

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>