Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Striking the right note on a magnetic violin


Researchers learn to fine tune tokamak magnetic fields to mitigate damaging energy bursts

The swirling plasma in donut-shaped fusion facilities called tokamaks are subject to intense heat bursts that can damage the vessel's walls. Halting or mitigating these bursts, called Edge Localized Modes (ELMs), is a key goal of fusion research.

Researchers used the rectangular coils shown here to strike the magnetic fields that enclose the donut-shaped plasma. The colors of the plasma denote the different vibrations produced by striking the fields with external magnetic coils.

Figure courtesy of Princeton Plasma Physics Laboratory and General Atomics.

While physicists have long known that they could suppress ELMs by pushing and pulling on the plasma with magnetic fields, they frequently found that doing so destabilized the core of the plasma. The reason for this was that perturbing the plasma as they were doing always led to the same response, like producing the same note when striking a tuning fork.

Now scientists at General Atomics and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have found an effective way to mitigate ELMs without adversely affecting plasma in the core region. They were able to do this because the magnetic fields that enclose the plasma are like the strings on a violin that produce notes when struck with the fields from external magnetic coils (Figure 1). And one of these notes, the researchers found, is particularly useful for preventing ELMs.

... more about:
»Atomics »ITER »PPPL »Plasma »magnetic fields »physics

They discovered this note by pushing and pulling the fields that encircle the tokamak for two rotations instead of the standard one during experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego. This produced a very stable mode of response that can be used to help control the edge of the plasma.

The researchers verified these findings with diagnostics that showed the different plasma responses to the two-rotation perturbations. "We now understand how to pluck just the notes that sound the best, giving us the power to fine-tune our plasmas" says Nikolas Logan, who led the research team with Carlos Paz-Soldan of General Atomics and will give an invited talk on the results at the 57th Annual Meeting of the APS Division of Plasma Physics.

These finding could have important implications for ITER, the multinational tokamak being built in France. They suggest that ITER may be able to use the newly discovered results to prevent or mitigate ELMs without impacting overall performance.


Contact: Nikolas Logan, (858)-455-3614,

Abstracts: BI2.00005 Observation, Identification, and Impact of Multi-Modal Plasma Responses to Applied Magnetic Perturbations
Session Session BI2: Pedestals
9:30 AM-12:30 PM, Monday, November 16, 2015
Room: Chatham Ballroom C

Media Contact

Saralyn Stewart


Saralyn Stewart | EurekAlert!

Further reports about: Atomics ITER PPPL Plasma magnetic fields physics

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>