Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar desk in wave-like motion

08.10.2015

Astronomers detect unusual structures in AU Microscopii

As many other stars, AU Microscopii is surrounded by a dust disk. Now researchers – including scientists from the Max Planck Institute for Astronomy in Heidelberg – have discovered unusual structures in this disk, which change over time.


Images showing the debris disk around the star AU Mic in 2010 (top, Hubble Space Telescope), 2011 (center, ditto) and 2014 (bottom, SPHERE instrument), including newly discovered fast-moving wave-like features. The black central circles show where the brilliant light of the central star has been blocked off to reveal the much fainter disc, and the position of the star is indicated schematically. The scale bar at the top of the picture indicates the diameter of the orbit of the planet Neptune in the Solar System (60 times the distance Earth-Sun, corresponding to 60 AU). Note that the brightness of the outer parts of the disc has been artificially brightened to reveal the faint structure.

© ESO, NASA & ESA

The scientists are still puzzling what this phenomenon, which had previously never been observed before, could be. Is it connected with the eruptions of the star AU Mic? Or possibly even with as of yet undetected planets circling within the dust disk?

The star AU Mic ("AU Microscopii") in the Southern constellation Microscope, which is less than 33 light-years from Earth, is surrounded by a sizable disk made of dust, which observers on Earth can see directly edge-on.

Now, the has been imaged in great detail using SPHERE, the newly installed exoplanet-and-disks imaging machine at ESO's Very Large Telescope, and previous data from the Hubble Space Telescope. For the first time, astronomers could not only identify sub-structures, but also reliably track changes within the disk: fast-moving, wave-like features that move outwards within the disk.

When the instrument team for SPHERE chose targets for their initial observations, AU Mic was a natural candidate. MPIA director Thomas Henning, who is part of the team that studied the disk, explains: “Right away, we noticed detailed structures in the disk – if you had told me a few years ago that we would be able to image disks in such detail, I wouldn't have believed you. We compared these structures with images taken by a number of colleagues and myself using the Hubble Space Telescope in 2010 and 2011.”

Henning continues: “We were in for a surprise: Yes, we were able to identify reliably a considerable number of structures in both the SPHERE and the Hubble images. But within those few years, the features had moved away from the star. For the first time, we had observed not only the structure or the spectral features of a stellar debris disks – we were watching the disk change!”

According to a preliminary analysis, which will need to be confirmed by future observations, some of the matter observed might even be on its way out of the disk altogether, with sufficient speed to leave the stellar system behind.

There is, at this moment, no complete explanation for the disk dynamics observed by the combination of SPHERE and Hubble images. AU Mic, a red dwarf star (of type M1 Ve) a little over half the diameter of the Sun, is a rather young star with an age of around 12 million years, compared to our Sun's age of 5 billion years.

As is not uncommon for such young stars, AU Mic is very active, and frequently produces sizable flares: Eruptions involving the star's magnetic field, which catapult stellar plasma at high speed into the star's surroundings. It is possible that the moving features in the dust disk are caused by such stellar activity.

Another, tantalizing possibility is that the changes could be tell-tale signs of the presence of one or more giant planets in the debris disk. In that case, the motion would be due to disturbances caused by one or more planets' gravitational pull as it moves through the disk. So far, no planets around AU Mic have been detected – but this could change as search and imaging techniques improve.

In total, the surprising observations of disk changes around AU Mic provide for a whole programme of additional observations. If the researchers are very lucky, they might even be able to detect proto-planets – smaller bodies busily gathering sufficient mass for planethood – within the disk. More generally, extending observations such as these should allow for detailed comparison with simulations of such objects – and could shed light on processes of planet formation, which might have left tell-tale traces on the disk.

Contact

Dr. Markus Pössel
Press & Public Relations

Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Email: poessel@mpia.de


Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200

Fax:  +49 6221 528-339

Email: henning@mpia.de


Original publication
Boccaletti et al.
Fast-Moving Structures in the Debris Disk Around AU Microscopii
Nature, 8 October 2015

Dr. Markus Pössel | Max Planck Institute for Astronomy, Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>