Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar desk in wave-like motion

08.10.2015

Astronomers detect unusual structures in AU Microscopii

As many other stars, AU Microscopii is surrounded by a dust disk. Now researchers – including scientists from the Max Planck Institute for Astronomy in Heidelberg – have discovered unusual structures in this disk, which change over time.


Images showing the debris disk around the star AU Mic in 2010 (top, Hubble Space Telescope), 2011 (center, ditto) and 2014 (bottom, SPHERE instrument), including newly discovered fast-moving wave-like features. The black central circles show where the brilliant light of the central star has been blocked off to reveal the much fainter disc, and the position of the star is indicated schematically. The scale bar at the top of the picture indicates the diameter of the orbit of the planet Neptune in the Solar System (60 times the distance Earth-Sun, corresponding to 60 AU). Note that the brightness of the outer parts of the disc has been artificially brightened to reveal the faint structure.

© ESO, NASA & ESA

The scientists are still puzzling what this phenomenon, which had previously never been observed before, could be. Is it connected with the eruptions of the star AU Mic? Or possibly even with as of yet undetected planets circling within the dust disk?

The star AU Mic ("AU Microscopii") in the Southern constellation Microscope, which is less than 33 light-years from Earth, is surrounded by a sizable disk made of dust, which observers on Earth can see directly edge-on.

Now, the has been imaged in great detail using SPHERE, the newly installed exoplanet-and-disks imaging machine at ESO's Very Large Telescope, and previous data from the Hubble Space Telescope. For the first time, astronomers could not only identify sub-structures, but also reliably track changes within the disk: fast-moving, wave-like features that move outwards within the disk.

When the instrument team for SPHERE chose targets for their initial observations, AU Mic was a natural candidate. MPIA director Thomas Henning, who is part of the team that studied the disk, explains: “Right away, we noticed detailed structures in the disk – if you had told me a few years ago that we would be able to image disks in such detail, I wouldn't have believed you. We compared these structures with images taken by a number of colleagues and myself using the Hubble Space Telescope in 2010 and 2011.”

Henning continues: “We were in for a surprise: Yes, we were able to identify reliably a considerable number of structures in both the SPHERE and the Hubble images. But within those few years, the features had moved away from the star. For the first time, we had observed not only the structure or the spectral features of a stellar debris disks – we were watching the disk change!”

According to a preliminary analysis, which will need to be confirmed by future observations, some of the matter observed might even be on its way out of the disk altogether, with sufficient speed to leave the stellar system behind.

There is, at this moment, no complete explanation for the disk dynamics observed by the combination of SPHERE and Hubble images. AU Mic, a red dwarf star (of type M1 Ve) a little over half the diameter of the Sun, is a rather young star with an age of around 12 million years, compared to our Sun's age of 5 billion years.

As is not uncommon for such young stars, AU Mic is very active, and frequently produces sizable flares: Eruptions involving the star's magnetic field, which catapult stellar plasma at high speed into the star's surroundings. It is possible that the moving features in the dust disk are caused by such stellar activity.

Another, tantalizing possibility is that the changes could be tell-tale signs of the presence of one or more giant planets in the debris disk. In that case, the motion would be due to disturbances caused by one or more planets' gravitational pull as it moves through the disk. So far, no planets around AU Mic have been detected – but this could change as search and imaging techniques improve.

In total, the surprising observations of disk changes around AU Mic provide for a whole programme of additional observations. If the researchers are very lucky, they might even be able to detect proto-planets – smaller bodies busily gathering sufficient mass for planethood – within the disk. More generally, extending observations such as these should allow for detailed comparison with simulations of such objects – and could shed light on processes of planet formation, which might have left tell-tale traces on the disk.

Contact

Dr. Markus Pössel
Press & Public Relations

Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Email: poessel@mpia.de


Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200

Fax:  +49 6221 528-339

Email: henning@mpia.de


Original publication
Boccaletti et al.
Fast-Moving Structures in the Debris Disk Around AU Microscopii
Nature, 8 October 2015

Dr. Markus Pössel | Max Planck Institute for Astronomy, Heidelberg

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>