Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Trek’s Vision Becomes Reality

04.03.2016

Physicists from University of Jena for the First Time Demonstrate Teleportation of Classic Object

„Beam me up, Scotty“ – even if Captain Kirk supposedly never said this exact phrase, it remains a popular catch-phrase to this day. Whenever the chief commander of the television series starship USS Enterprise (NCC-1701) wanted to go back to his control centre, this command was enough to take him back to the control centre instantly – travelling through the infinity of outer space without any loss of time.


Juniorprof. Dr Alexander Szameit (r.) and Dr Marco Ornigotti with models of the USS Enterprise. The physicists (University of Jena) for the first time demonstrate teleportation of classic objects.

Photo: Jan-Peter Kasper/FSU

But is all of this science fiction that was thought up in the 1960s? Not quite: Physicists are actually capable of beaming—or „teleporting“ as it is called in technical language – if not actual solid particles at least their properties.

“Many of the ideas from Star Trek that back then appeared to be revolutionary have become reality,” explains Prof. Dr Alexander Szameit from the University of Jena (Germany). “Doors that open automatically, video telephony or flip phones – all things we have first seen on the starship USS Enterprise,” exemplifies the Juniorprofessor of Diamond-/Carbon-Based Optical Systems. So why not also teleporting?

“Elementary particles such as electrons and light particles exist per se in a spatially delocalized state,” says Szameit. For these particles, it is with a certain probability thus possible to be in different places at the same time. “Within such a system spread across multiple locations, it is possible to transmit information from one location to another without any loss of time.” This process is called quantum teleportation and has been known for several years.

The team of scientists lead by science fiction fan Szameit has now for the first demonstrated in an experiment that the concept of teleportation does not only persist in the world of quantum particles, but also in our classical world. Szameit and his colleagues report about these achievements in the scientific journal “Laser & Photonics Reviews” (DOI: 10.1002/lpor.201500252).

They used a special form of laser beams in the experiment. “As can be done with the physical states of elementary particles, the properties of light beams can also be entangled,” explains Dr Marco Ornigotti, a member of Prof. Szameit’s team. For physicists, “entanglement” means a sort of codification. “You link the information you would like to transmit to a particular property of the light,” clarifies Ornigotti who led the experiments for the study that was now presented.

In their particular case, the physicists have encoded some information in a particular polarisation direction of the laser light and have transmitted this information to the shape of the laser beam using teleportation. “With this form of teleportation, we can, however, not bridge any given distance,” admits Szameit. “On the contrary, classic teleportation only works locally.” But just like it did at the starship USS Enterprise or in quantum teleportation, the information is transmitted fully and instantly, without any loss of time. And this makes this kind of information transmission a highly interesting option in telecommunication for instance, underlines Szameit.

Original publication:
Diego Guzman-Silva et al. Demonstration of local teleportation using classical entanglement, Laser Photonics Rev. 2016, DOI 10.1002/lpor.201500252

Contact:
Juniorprof. Dr Alexander Szameit, Dr Marco Ornigotti
Institute of Applied Physics at the University of Jena
Albert-Einstein-Straße 15, 07745 Jena
Germany
Phone: +49 (0) 3641 / 947985, +49 (0) 3641 / 947990
E-mail: alexander.szameit[at]uni-jena.de, marco.ornigotti[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>