Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stagediving with biomolecules improves optical microscopy

02.05.2018

Physicists from Dresden and Würzburg have developed a novel method for optical microscopy. Using biological motors and single quantum dots, they acquire ultra-high-resolution images.

The resolution of conventional optical microscopy is limited by the fundamental physical principle of diffraction to about one half of the wavelength of the light: If the distance between two objects is smaller than this so-called "diffraction limit", they can no longer be visually separated - their image appears "blurred ". To acquire optical images at the scale of few nanometers, this is clearly not sufficient.


Microtubules, gliding through the optical near field (blue) of a nanostructured gold surface. The quantum dots (green) react to the local field by increasing their fluorescence rate.

Graphic: Heiko Groß

Nano-probes migrate over surfaces

For this reason, scientists worldwide have developed elaborate concepts in the past in order to circumvent the diffraction limit and thus to increase the resolution. However, the technical effort needed to do so is considerable and usually highly specialized microscope assemblies are required.

In particular, the investigation of optical near fields still represents a great challenge, because they are so strongly localized that they cannot send waves to a distant detector.

In a new study, physicists from the Julius-Maximilians-Universität Würzburg (JMU) and the Technische Universität Dresden now show that it is possible to measure these near-fields with significantly less effort. They used a biomolecular transport system to slide many extremely small optical nano-probes over a surface. They present their results in the current issue of the renowned journal Nature Nanotechnology.

Intracellular molecules used as transport system

"As probes we used so-called quantum dots - small fluorescent particles a few nanometers in size," says Professor Bert Hecht, describing the physicists' approach. Hecht holds the Chair of Experimental Physics (Biophysics) at the JMU; and jointly supervised the project together with Professor Stefan Diez, Chairholder of BioNanoTools at the B CUBE - Center for Molecular Bioengineering at TU Dresden.

So-called motor proteins and microtubules make the quantum dots pass over the object to be examined. "These two elements are among the fundamental components of an intracellular transport system," explains Diez. "Microtubules are tubular protein complexes, up to several tenths of millimeters long, that form a major network of transport routes inside cells. Motor proteins run along these routes, transporting intracellular loads from one place to another," says the scientist.

Motor proteins provide the driving force

The physicists from Würzburg and Dresden took advantage of this concept, but in reverse order: "The motor proteins are fixed to the sample surface and pass the microtubules over them - a kind of 'stagediving' with biomolecules," says Heiko Groß, PhD student in the Hecht group. The quantum dots serving as optical probes are attached to the microtubules and move together with their carrier.

Since a single quantum dot would take a very long time to scan a large surface area, the researchers used large amounts of quantum dots and motor proteins which move at the same time and thus scan a large area in a short time. "Using this principle, we can measure local light fields over a large area with a resolution of less than five nanometers using a setup that resembles a classical optical microscope," explains the physicist. By comparison, one nanometer equals one millionth of a millimeter.

Test on a thin layer of gold

The physicists tested their method on a thin layer of gold with narrow slits less than 250 nanometers wide. These slots have been illuminated from below with blue laser light. "Light passing through these narrow gaps is limited to the gap width, making it ideal for demonstrating high-resolution optical microscopy," says Gross.

During the measurement, a "swarm of microtubules" simultaneously glides in different directions across the surface of the gold layer. Using a camera, the position of each transported quantum dot can be exactly determined at defined time intervals. If a quantum dot now moves through the optical near-field of a slit, it lights up more strongly and therefore acts as optical sensor. Since the diameter of the quantum dot is only a few nanometers, the light distribution within the slot can be determined extremely precisely, thus circumventing the diffraction limit.

Ten times higher accuracy

Another nice feature of this novel approach is that due to its length and strength a microtubule moves in an extremely straight and predictable fashion across the motor-coated sample surface. "This makes it possible to determine the position of the quantum dots ten times more accurately than with previously established high-resolution microscopy methods," explains Dr. med. Jens Ehrig, former postdoctoral fellow in the Diez group and current head of the "Molecular Imaging and Manipulation" facility at the Center for Molecular and Cellular Bioengineering (CMCB) of the TU Dresden. Furthermore, disturbances caused by artifacts due to near-field coupling can be excluded. Since the transport system consists of only a few molecules, its influence on the optical near fields is negligible.

The researchers hope to use their idea to establish a new technology in the field of surface microscopy. In any case, they are convinced that: "This type of microscopy can demonstrate its strengths, especially in the optical inspection of nanostructured surfaces." In a next step, they now want to use this molecular transport system to couple quantum dots to specifically prepared optical near field resonators to study their interaction.

Heike Gross, Hannah S. Heil, Jens Ehrig, Friedrich W. Schwarz, Bert Hecht, Stefan Diez: Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots. Nature Nanotechnology

Contact

Heiko Groß and Prof. Dr. med. Bert Hecht, Physics Institute of the University of Würzburg, T +49 931 31-85863, hecht@physik.uni-wuerzburg.de

Dr. Jens Ehrig and Prof. Dr. med. Stefan Diez, B CUBE - Center for Molecular Bioengineering, TU Dresden, T +49 (351) 463 43010, stefan.diez@tu-dresden.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41565-018-0123-1 The Original Paper

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>