Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezing out mountains, mathematically, on Jupiter's moon Io

18.05.2016

Novel mountain-building mechanism on Io may also have operated on early Earth

Mountains aren't the first thing that hit you when you look at images of Jupiter's innermost moon, Io. But once you absorb the fact that the moon is slathered in sulfurous lava erupted from 400 active volcanoes, you might turn your attention to scattered bumps and lumps that turn out, on closer inspection, to be Io's version of mountains.There are about 100 of them, and they don't look anything like the low lying volcanoes.


A thrust fault rips to the surface of a numerical Io. As it breaches the surface, it pulls on the overhanging crustal block (to the left of the fault), and 'extensional' features such as trenches called graben form there. The fault also provides a conduit for rising magma and collapsing magma chambers form 'patera', or depressions on the surface. The stair-stepping is an artifact; the simulation divides the crust into small elements so that simpler (solvable) functions can be used to describe the rock mechanics.

Credit: Bland and McKinnon

They also don't look like mountains on our home world. While we favor majestic ranges stretching from horizon to horizon, the mountains on Io are isolated peaks of great height that jut up out of nowhere. From space, they look rather like the blocky chips in the fancier kind of chocolate chip cookie.

For planetary geophysicists like William McKinnon, professor of earth and planetary science in Arts & Sciences at Washington University in St. Louis, the mountains of Io are an intriguing puzzle. By what process consistent with everything that is known about Io could these bizarre mountains have formed?

Since Io buries the evidence of its tectonic processes under a continually refreshed coating of lava (adding 5 inches a decade), the scientists have turned increasingly to computer simulations to solve the problem. In the May 16 online advance issue of Nature Geoscience, McKinnon and Michael T. Bland, a research space scientist at the USGS Astrogeology Science Center in Flagstaff, Ariz., publish a computer model that is able to make numerical mountains that look much like the jutting rock slabs on Io.

Putting the squeeze on

"The planetary community has thought for a while that Io's mountains might be a function of the fact that it is continuously erupting lava over the entire sphere," McKinnon said. "All that lava spewed on the surfaces pushes downward and, as it descends, there's a space problem because Io is a sphere, so you end up with compressive forces that increase with depth."

McKinnon and his former student, Paul Schenk, now at the Lunar and Planetary Institute in Houston, wrote a paper explaining this hypothesis in 2001.

The numerical experiment described in Nature Geoscience tests this hypothesis through simulation. "People have been squeezing planetary interiors forever to see what happens," McKinnon said, "but we're applying the squeeze differently, because on Io compression increases with depth; the surface is not in compression. We thought we could mimic this by beveling in the edges of a box, squeezing it as you might an accordion.

The simulations show that the strain localizes to a single fracture, or fault, that starts deep in the lithosphere and rips through the rock all the way to the surface. When it breaches the surface, it actually overshoots, forming a scarp, or cliff, and stretching the surface of the overhanging block.

"It's a neat demonstration of how things might actually work," McKinnon said.

It might explain, for example, why there are often recent eruptions near mountains.

"The compressive forces deep in the crust are incredibly high," Mckinnon said. "When these faults breach the surface, those forces are released, and the entire stress environment around the fault changes, providing a pathway for magma to erupt."

The model might also explain why the mountains are associated with shallow, irregular depressions called patera. "When the stress environment changes," McKinnon said, "a magma chamber can form at midlevel in the crust. When this magma surfaces along the fault, the crust above the chamber collapses, forming the patera."

The model of mountain building also explains some of the "extensional" tectonic features on Io, such as "pull apart" mountains. These are mountains that have split in two parts that have shifted with respect to one another.

It might even explain a subtle feature of Io: the anti-correlation between mountains and volcanoes.

"If you look at a big map of Io," McKinnon said, "there are concentrations of mountains and concentrations of volcanoes, and they kind of nest into one another. Even though mountains and volcanoes are often found together, if you look at all of the mountains and all of the volcanoes, they're anti-correlated. It's a peculiarity of Io."

Why might this be? It's not just the increasing weight of the overlying lava that puts the deep crust in compression McKinnon said, but also the increasing temperature. "Heating at depth causes the rocks to want to expand, and since there's no room to expand, you again get compressive forces," he said.

As long as the volcanoes are erupting, they carry this heat away and thermal stresses are low, reducing the likelihood of mountain formation. But if volcanism stops, the crust heats up, thermal stresses increase, and mountain formation becomes more likely.

Was Earth once like Io?

If all of this seems very alien, it is. "It's a novel mountain-forming mechanism that we don't see elsewhere in the solar system," McKinnon said.

"But the same kind of thing could have happened on Earth, when it was very young and entirely covered by a shallow ocean," McKinnon said.

"Because there was still lots of volcanism, mountains like those on Io might have burst through the ocean. They might have been the first emergent land on Earth," McKinnon said.

So Io might be a time portal to the early Earth.

###

"Mountain building on Io driven by deep faulting," Nature Geoscience, published online May 16, 2016. doi:10.1038/ngeo2711 This work was supported by NASA's Planetary Geology and Geophysics Program (NNX11AP16G) and Solar System Workings Program (NNH15AZ801).

Media Contact

Diana Lutz
dlutz@wustl.edu
314-935-5272

 @WUSTLnews

http://www.wustl.edu 

Diana Lutz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>