Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Squeezed quantum cats


Quantum physics is full of fascinating phenomena. Take, for instance, the cat from the famous thought experiment by the physicist Erwin Schrodinger. The cat can be dead and alive at once, since its life depends on the quantum mechanically determined state of a radioactively decaying atom which, in turn, releases toxic gas into the cat's cage. As long as one hasn't measured the state of the atom, one knows nothing about the poor cat's health either - atom and kitty are intimately "entangled" with each other.

Equally striking, if less well known, are the so-called squeezed quantum states: Normally, Heisenberg's uncertainty principle means that one cannot measure the values of certain pairs of physical quantities, such as the position and velocity of a quantum particle, with arbitrary precision. Nevertheless, nature allows a barter trade:

The scientists used this ion trap to create the new quantum states.

Credit: ETH Zurich

If the particle has been appropriately prepared, then one of the quantities can be measured a little more exactly if one is willing to accept a less precise knowledge of the other quantity. In this case the preparation of the particle is known as "squeezing" because the uncertainty in one variable is reduced (squeezed).

Schrödinger's cat and squeezed quantum states are both important physical phenomena that lie at the heart of promising technologies of the future. Researchers at the ETH were now able successfully to combine both in a single experiment.

Squeezing and shifting

In their laboratory, Jonathan Home, professor of experimental quantum optics and photonics, and his colleagues catch a single electrically charged calcium ion in a tiny cage made of electric fields. Using laser beams they cool the ion down until it hardly moves inside the cage. Now the researchers reach into their bag of tricks: they "squeeze" the state of motion of the ion by shining laser light on it and by skilfully using the spontaneous decay of its energy states.

Eventually the ion's wave function (which corresponds to the probability of finding it at a certain point in space) is literally squashed: now the physicists have a better idea of where the ion is located in space, but the uncertainty in its velocity has increased proportionately. "This state squeezing is an important tool for us", Jonathan Home explains. "Together with a second tool - the so-called state-dependent forces - we are now able to produce a "squeezed Schrödinger cat" ".

To that end the ion is once more exposed to laser beams that move it to the left or to the right. The direction of the forces induced by the laser depends on the internal energy state of the ion. This energy state can be represented by an arrow pointing up or down, also called a spin. If the ion is in an energy superposition state composed of "spin up" and "spin down", the force acts both to the left and to the right. In this way, a peculiar situation is created that is similar to Schrödinger's cat: the ion now finds itself in a hybrid state of being on the right (cat is alive) and on the left (cat is dead) at the same time. Only when one measures the spin does the ion decide whether to be on the right or on the left.

Stable cats for quantum computers

The Schrödinger cat prepared by professor Home and his collaborators is special in that the initial squeezing makes the ion states "left" and "right" particularly easy to distinguish. At the same time, it is also pretty large as the two ion states are far apart. "Even without the squeezing our "cat" is the largest one produced to date", Home points out.

"With the squeezing, the states "left" and "right" are even more distinguishable - they are as much as sixty times narrower than the separation between them". All this isn't just about scientific records, however, but also about practical applications. Squeezed Schrödinger cats are particularly stable against certain types of disturbances that would normally cause the cats to lose their quantum properties and become ordinary felines. That stability could, for instance, be exploited in order to realize quantum computers, which use quantum superposition states to do their calculations. Furthermore, ultra-precise measurements could be made less sensitive to unwanted external influences.


Literature reference

Lo HY, Kienzler D, de Clercq L, Marinelli M, Negnevitsky V, Keitch, BC, Home JP: Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets. Nature, 21 May 2015, doi: 10.1038/nature14458 []

Media Contact

Dr. Jonathan Home


Dr. Jonathan Home | EurekAlert!

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>