Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoking Gun Uncovering Secret of Cosmic Bullets

03.03.2016

The LOFAR telescope normally receives weak radio waves from the distant universe. But now and then an ultra-short, bright radio pulse is observed somewhere in between AM and FM radio frequencies. This radio blast would appear as a short cracking sound in your car radio. While usually ignored, this radio signal is actually the last SOS of an elementary particle entering the Earth atmosphere at almost the speed of light. The particles were fired off by a cosmic accelerator Millions of year ago. A team including scientists from the German Long Wavelength consortium (GLOW) have now unraveled the radio code of these intruders to determine their nature and constrain their origin.

Supernova explosions, dying stars, black holes. All these phenomena have been named as sources of cosmic ray particles. But until now nobody really knows the origin. Cosmic ray particles are elementary particles that travel through the universe with an energy that is a million times bigger than in the largest particle accelerator on earth.


Image of air showers, simulated with CORSIKA, mounted onto a photo of the central station (“superterp”) of the LOFAR telescope network near Exloo/Netherlands.

ASTRON/KIT/Radboud


European antenna stations of the International LOFAR Telescope (ILT). The core station is near Exloo in the Netherlands; stations are in the Netherlands, Germany, Poland, UK, Sweden and France.

LOFAR

With almost the speed of light, they collide like bullets with the atmosphere, before falling apart into a cascade of secondary particles. Their interaction with the Earth’s magnetic field leads to an extremely short radio signal, no longer than one billionth of a second. Thousands of LOFAR antennas help to find the signal and measure it accurately.

Finding the signal is one thing, knowing what caused it is another. For the first time astronomers now succeeded in calculating and modelling what kind of particle came in. “We can now identify the bullet,” says Heino Falcke from Radboud University in the Netherlands, the chair of the International LOFAR Telescope board who also pioneered this new technique. “In most cases the bullet turns out to be a single proton or the light nucleus of a helium atom.”

“Because of the enormous energy, most astrophysicists assume that cosmic particles originate deep in the universe, like black holes in other galaxies”, adds Stijn Buitink from the Vrije Universiteit Brussel, the first author of the Nature paper. “But we think they come from a nearby source and get their energy from a cosmic accelerator in the Milky Way – perhaps a very massive star.”

The sources of cosmic particles are cosmic accelerators, up to a million times stronger than the Large Hadron Collider (LHC) in Geneva or any conceivable man-made accelerator for that matter. “These particles come to Earth anyway, so we only have to find them”, says Heino Falcke who is affiliated with the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany. “We can now do high energy physics with simple FM radio antennas.” This opens up a new window to the high-energy universe and high-precision measurement of cosmic particles.

"The main difference to ordinary FM radios is in the digital electronics and the broad-band receivers which allow us to measure a large number of frequencies simultaneously at high speed“, explains Andreas Horneffer from MPIfR who built the antennas of a pre-cursor of the present experiment, LOPES (“LOFAR Prototype Experimental Station”) as part of his PhD project.

The particle identification from the radio measurements relies on exact knowledge of the radio emission physics. The LOFAR data are compared with simulations made with the CoREAS code developed by Tim Huege and his colleagues at Karlsruhe Institute of Technology (KIT) in the framework of the CORSIKA air shower simulation program. "When we started the radio signal simulations ten years ago and compared with data of our LOPES experiment, the physics of the radio emission was a big puzzle. Today, the simulations can reproduce even the high-quality LOFAR data in great detail, and could therefore be used to interpret the measurements with confidence." says Tim Huege.

Cosmic ray detection with LOFAR has opened the door to precise measurements that help unravel the sources of these highest energy particles. The future Square Kilometre Array (SKA) with its very high density of antennas is expected to unleash the full potential of radio detection of cosmic rays with even higher measurement precision than achieved with LOFAR.

“It is a remarkable experience having particle physicists and radio astronomers working together to realize such a successful experiment in the rising new field of astro-particle physics”, concludes Ralf-Jürgen Dettmar from Ruhr-Universität Bochum, the chairman of the German GLOW consortium.


The International LOFAR Telescope (ILT) was originally planned by ASTRON in the Netherlands, together with a number of European partner countries. The LOFAR telescope network is made for radio observations in the meter wavelengths regime. At present it comprises 38 stations in the Netherlands, 6 stations in Germany, 3 in Poland and one each in the UK, Sweden and France. Each station consists of hundreds of dipole antennas which are electronically connected and thus form a virtual radio telescope across an area half the size of Europe.

The German Long Wavelength Consortium (GLOW) was formed 2006 by German universities and research institutes to foster the use of the radio spectral window at meter wavelengths for astrophysical research. German researchers study for instance the evolution of galaxy clusters, magnetic fields in the intergalactic medium, the nature and evolution of pulsars, and solar outbursts.

Scientists from Max Planck Institute for Radio Astronomy involved in this research were Andreas Horneffer, Michael Kramer, Wolfgang Reich, Olaf Wucknitz and J. Anton Zensus. Heino Falcke (Radboud University, Nijmegen) also holds an affiliation with MPIfR.

Original Paper:
“Radio detections of cosmic rays reveal a strong light mass component at 10^17 - 10^17.5 eV”, by S. Buitink et al. Published in Nature on 03 March 2016 (embargoed until 02 March 2016, 19:00 CET)

Local Contact:

Dr. Andreas Horneffer
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-505
E-mail: ahorneffer@mpifr-bonn.mpg.de

Prof. Dr. Heino Falcke
Radboud University Nijmegen &
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +31 24 3652020
Mobile: +49 151 23040365
E-mail: h.falcke@astro.ru.nl

Prof. Dr. Ralf-Jürgen Dettmar
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Fon +49 234 32 23454
E-Mail: dettmar@astro.rub.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>