Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecule switch

13.03.2017

A research team with participants from Konstanz presents a molecular switch so far unmatched in its reproducibility

The theoretical physicists Junior Professor Fabian Pauly and his postdoc Dr. Safa G. Bahoosh now succeeded in a team of experimental physicists and chemists in demonstrating a reliable and reproducible single molecule switch.


Schematic of a tripodal single molecule switch. The height of the molecular head, containing a dipolar group, can be changed through applied electric fields. In this way an electric current can flow between the gold electrodes through the molecule or not, the switch is "on" or "off."

Credit: Prof. Fabian Pauly, University of Konstanz

The basis for this switch is a specifically synthesized molecule with special properties. This is an important step towards realising fundamental ideas of molecular electronics. The results were published in the online journal Nature Communications on 9 March 2017.

Fabian Pauly compares the molecule, which was synthesised by Professor Marcel Mayor who is affiliated to the University of Basel in Switzerland and to the Karlsruhe Institute of Technology (KIT) in Germany, with a three-legged lunar landing spacecraft that has some sort of head on top and is standing on the moon's surface.

Its three "legs" have anchor groups that form robust links to the surface - in this case a gold substrate. A nitrile group, positioned at its "head", points away from the gold surface and is thus well separated from it. A second electrode, the gold tip of a scanning tunnelling microscope, can connect and establish contact.

In this way electric current can flow through the molecule. Using the highly precise technique of the scanning tunnelling microscope, it has now become possible for the first time for such a complex three-legged molecule to measure the conductance value at every position above the nitrile group. Length control in the range of picometres, the trillionth part of a metre, is required for this process.

The nitrile group's dipole moment, i.e. an electric plus-minus charge, makes not only mechanical control possible, but also control through electric fields. The voltage between the electrodes can be used to adjust the height of the head, as was demonstrated by Safa G. Bahoosh in theoretical calculations. If a positive field is applied, the molecule's head is pressed down. If the field becomes negative through polarity reversal, the head moves up.

This means that the contact can be electrically established or broken, and thus the current can be switched on and off. "What's really great about this result is that we have a well-defined on and off state", says Fabian Pauly. Previous concepts often failed because it was too difficult to control the electronic contact to single molecules and therefore only statistical interpretations of the behaviour of molecular contacts could be made.

Now, for the first time, contact between a molecule and the gold tip of the scanning tunnelling microscope could be opened and closed reproducibly many thousand times both mechanically and electrically, without causing any plastic deformations. Fabian Pauly's team member Safa G. Bahoosh, who has just succeeded in acquiring funding from the German Research Foundation (DFG) for her position for the next three years, used density functional theory to calculate geometric structures, electric conductance values and the images that would be produced by the scanning tunnelling microscope.

With her simulations she was able to predict the shape of the individual molecule on the surface. Her results agree with the experiments conducted at the KIT. There, headed by Dr. Lukas Gerhard and Professor Wulf Wulfhekel, the electron transport was measured with the scanning tunnelling microscope. In addition to the switching functionality, the theoretical simulations combined with the systematic experiments reveal new insights into minute energies and forces that occur during reconfigurations in molecular contacts.

###

Original publication: Lukas Gerhard, Kevin Edelmann, Jan Homberg, Michael Valášek, Safa G. Bahoosh, Maya Lukas, Fabian Pauly, Marcel Mayor & Wulf Wulfhekel: An electrically actuated molecular toggle switch. Nature Communications 9 March 2017 DOI: 10.1038/NCOMMS14672; Link: https://doi.org/10.1038/ncomms14672

Facts:

  • The study was conducted at the University of Konstanz in the Collaborative Research Centre (SFB) 767 "Controlled Nanosystems".
  • The position of coauthor Dr. Sara G. Bahoosh, based in Konstanz, will be funded by the German Research Foundation (DFG) in the next three years.
  • Fabian Pauly's junior professorship is sponsored by the Carl-Zeiss Foundation.
  • Computing time for the numerical simulations was provided, amongst others, by the initiative for high performance computing in the state of Baden-Württemberg (bwHPC).

Note to editors:

You can download a photo here: https://www.uni-konstanz.de/fileadmin/pi/fileserver/2017/Einzelmolekuelschalter-Uni-KN.jpg

Caption: Schematic of a tripodal single molecule switch. The height of the molecular head, containing a dipolar group, can be changed through applied electric fields. In this way an electric current can flow between the gold electrodes through the molecule or not, the switch is "on" or "off".

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>