Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simulation shows key to building powerful magnetic fields


When certain massive stars use up all of their fuel and collapse onto their cores, explosions 10 to 100 times brighter than the average supernova occur. Exactly how this happens is not well understood. Astrophysicists from Caltech, UC Berkeley, the Albert Einstein Institute, and the Perimeter Institute for Theoretical Physics have used the National Science Foundation's Blue Waters supercomputer to perform three-dimensional computer simulations to fill in an important missing piece of our understanding of what drives these blasts.

The researchers report their findings online on November 30 in advance of publication in the journal Nature. The lead author on the paper is Philipp Mösta, who started the work while a postdoctoral scholar at Caltech and is now a NASA Einstein Fellow at UC Berkeley.

This is a visualization of the strong, ordered magnetic field built up by dynamo action in the core of a rapidly rotating, collapsed star.

Credit: Moesta et al./Nature

The extremely bright explosions come in two varieties--some are a type of energetic supernovae called hypernovae, while others are gamma-ray bursts (GRBs). Both are driven by focused jets formed in some collapsed stellar cores. In the case of GRBs, the jets themselves escape the star at close to the speed of light and emit strong beams of extremely energetic light called gamma rays. The necessary ingredients to create such jets are rapid rotation and a magnetic field that is a million billion times stronger than Earth's own magnetic field.

In the past, scientists have simulated the evolution of massive stars from their collapse to the production of these jet-driven explosions by factoring unrealistically large magnetic fields into their models--without explaining how they could be generated in the first place. But how could magnetic fields strong enough to power the explosions exist in nature?

"That's what we were trying to understand with this study," says Luke Roberts, a NASA Einstein Fellow at Caltech and a coauthor on the paper. "How can you start with the magnetic field you might expect in a massive star that is about to collapse--or at least an initial magnetic field that is much weaker than the field required to power these explosions--and build it up to the strength that you need to collimate a jet and drive a jet-driven supernova?"

For more than 20 years, theory has suggested that the magnetic field of the inner- most regions of a massive star that has collapsed, also known as a proto-neutron star, could be amplified by an instability in the flow of its plasma if the core is rapidly rotating, causing its outer edge to rotate faster than its center.

However, no previous models could prove this process could strengthen a magnetic field to the extent needed to collimate a jet, largely because these simulations lacked the resolution to resolve where the flow becomes unstable.

Mösta and his colleagues developed a simulation of a rapidly rotating collapsed stellar core and scaled it so that it could run on the Blue Waters supercomputer, a powerful supercomputer funded by the NSF located at the National Center for Supercomputing Applications at the University of Illinois. Blue Waters is known for its ability to provide sustained high-performance computing for problems that produce large amounts of information. The team's highest-resolution simulation took 18 days of around-the-clock computing by about 130,000 computer processors to simulate just 10 milliseconds of the core's evolution.

In the end, the researchers were able to simulate the so-called magnetorotational instability responsible for the amplification of the magnetic field. They saw--as theory predicted--that the instability creates small patches of an intense magnetic field distributed in a chaotic way throughout the core of the collapsed star.

"Surprisingly, we found that a dynamo process connects these patches to create a larger, ordered structure," explains David Radice, a Walter Burke Fellow at Caltech and a coauthor on the paper. An early type of electrical generator known as a dynamo produced a current by rotating electromagnetic coils within a magnetic field. Similarly, astrophysical dynamos generate currents when hydromagnetic fluids in stellar cores rotate under the influence of their magnetic fields. Those currents can then amplify the magnetic fields.

"We find that this process is able to create large-scale fields--the kind you would need to power jets," says Radice.

The researchers also note that the magnetic fields they created in their simulations are similar in strength to those seen in magnetars--neutron stars (a type of stellar remnant) with extremely strong magnetic fields. "It takes thousands or millions of years for a proto-neutron star to become a neutron star, and we have not yet simulated that. But if you could transport this thing thousands or millions of years forward in time, you would have a strong enough magnetic field to explain magnetar field strengths," says Roberts. "This might explain some fraction of magnetars or a particular class of very bright supernovae that are thought to be powered by a spinning magnetar at their center."


Additional authors on the paper, "A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae," are Christian Ott, professor of theoretical astrophysics; Erik Schnetter of the Perimeter Institute for Theoretical Physics, the University of Guelph, and Louisiana State University; and Roland Haas of the Max Planck Institute for Gravitational Physics in Potsdam-Golm, Germany. The work was partially supported by the Sherman Fairchild Foundation, by grants from the NSF, by NASA Einstein Fellowships, and by an award from the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Tom Waldman


Tom Waldman | EurekAlert!

Further reports about: Max Planck Institute NASA NSF explosions magnetic field massive star physics supernovae

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

More VideoLinks >>>