Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on cold Higgs

27.01.2015

For the first time physicists at the University of Stuttgart provide experimental proof of a stable and well-defined Higgs mode in superconductors – a direct analog to the Higgs particle, discovered only recently at the world´s largest particle accelerator, the Large Hadron Collider at the CERN – however, using not more than a table-top experiment.

When François Englert and Peter Higgs were awarded the 2013 Nobel Prize, a scientific breakthrough was honored that could hardly be more spectacular: born from pure calculations nearly half a century ago and theoretically predicted to exist, the Higgs particle is ultimately discovered by virtue of the largest experiment ever built, CERN´s Large Hadron Collider.


Superconductors are not only perfect conductors of electrical currents, but also display absolute diamagnetism which allows trapping of other magnets in their emergent magnetic field. Physicists of the University of Stuttgart now revealed another stunning property: A collective mode of superconducting electrons, the so-called Higgs mode, which is considered the solid-state analog to the only recently discovered Higgs particle.


Central tools for describing both the Higgs particle and superconductivity are the Higgs-potential and free-energy potential, respectively. The ground state is realized at the deepest point in the potential landscape. Upon adding energy, excitations from the ground state are possible – similar to a swinging ball – which ultimately manifest themselves as the Higgs-particle or the Higgs-mode.

In the 1960s, particle physicists were puzzled by the mass of certain gauge bosons responsible for mediating the weak interaction. According to the state of scientific knowledge back at the time, all gauge bosons were believed to be massless just like the one carrying electromagnetic interactions, the photon.

The solution to this mass conundrum was almost concomitantly put in a nutshell by a number of groups and cast into an elegant theory commonly termed the Higgs mechanism. Beside its success in explaining the gauge bosons’ masses, the theory proposed the existence of a yet unknown heavy particle, the Higgs boson.

The fundamental concept utilized to solve the mass problem, that is symmetry-breaking, was not entirely new, though. Prior to its prominent role in particle physics, it was vastly used among theorists working on the similarly enigmatic problem of superconductivity, i.e. the non-dissipative electrical conduction at temperatures close to absolute zero.

Today we know that beyond first glance both fields, particle physics and superconductivity, are intimately entangled sharing a common ground that is not only of conceptual nature but also experimentally testable: The same excitation associated with the massive Higgs particle in a particle-physics framework should accordingly manifest in superconductors, the so-called Higgs mode. Unlike the single Higgs particle, the Higgs mode in superconductors is a collective mode of charged particles similar to, e.g., an acoustic wave travelling through liquids.

Similar to the Higgs particle at CERN, tracking down the Higgs mode had grown into a particularly demanding challenge. Being an excitation of comparably high energy it almost instantaneously decays into particle-hole pairs after its generation rendering the Higgs mode invisible in ordinary superconductors.

An international group of physicists led by Prof. Martin Dressel (University of Stuttgart) and Prof. Aviad Frydman (Tel Aviv University) recently found a suspiciously enhanced absorption of light in extremely thin films of strongly disordered superconductors which is shown to be in excellent agreement with the theoretically expected absorption caused by the Higgs mode, and is thus deemed the first direct proof of a stable Higgs mode in superconductors.

The obstacle of the ultra-short lifetime was circumvented by a trick inspired by relativistic theories: At very low temperatures, superconductors conduct electrical currents without any losses. However, being reduced to extremely thin films and subject to massive lattice distortion and defects, these materials may turn insulating once a critical degree of disorder, the quantum-critical point, is reached. Close to criticality, the so-far unstable Higgs mode is now well-defined, long-lived, and, moreover, directly detectable by optical measurements.

The German-Israeli collaboration now succeeded in tracing the Higgs mode´s gradual emergence with increasing disorder and found an astonishing agreement with theory. With this, on the one hand, the first direct experimental proof of a stable and well-defined Higgs mode in superconductors is accomplished, which in addition may inspire the search for the Higgs mode in similar disordered solid state systems, and, on the other hand, an intriguing concurrence between solid state and particle physics is unveiled.
More information:

Uwe Pracht, University of Stuttgart, 1. Physikalisches Institut, Tel.: +49(0)711/685-64941,
E-Mail: uwe.pracht@pi1.physik.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>