Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on cold Higgs

27.01.2015

For the first time physicists at the University of Stuttgart provide experimental proof of a stable and well-defined Higgs mode in superconductors – a direct analog to the Higgs particle, discovered only recently at the world´s largest particle accelerator, the Large Hadron Collider at the CERN – however, using not more than a table-top experiment.

When François Englert and Peter Higgs were awarded the 2013 Nobel Prize, a scientific breakthrough was honored that could hardly be more spectacular: born from pure calculations nearly half a century ago and theoretically predicted to exist, the Higgs particle is ultimately discovered by virtue of the largest experiment ever built, CERN´s Large Hadron Collider.


Superconductors are not only perfect conductors of electrical currents, but also display absolute diamagnetism which allows trapping of other magnets in their emergent magnetic field. Physicists of the University of Stuttgart now revealed another stunning property: A collective mode of superconducting electrons, the so-called Higgs mode, which is considered the solid-state analog to the only recently discovered Higgs particle.


Central tools for describing both the Higgs particle and superconductivity are the Higgs-potential and free-energy potential, respectively. The ground state is realized at the deepest point in the potential landscape. Upon adding energy, excitations from the ground state are possible – similar to a swinging ball – which ultimately manifest themselves as the Higgs-particle or the Higgs-mode.

In the 1960s, particle physicists were puzzled by the mass of certain gauge bosons responsible for mediating the weak interaction. According to the state of scientific knowledge back at the time, all gauge bosons were believed to be massless just like the one carrying electromagnetic interactions, the photon.

The solution to this mass conundrum was almost concomitantly put in a nutshell by a number of groups and cast into an elegant theory commonly termed the Higgs mechanism. Beside its success in explaining the gauge bosons’ masses, the theory proposed the existence of a yet unknown heavy particle, the Higgs boson.

The fundamental concept utilized to solve the mass problem, that is symmetry-breaking, was not entirely new, though. Prior to its prominent role in particle physics, it was vastly used among theorists working on the similarly enigmatic problem of superconductivity, i.e. the non-dissipative electrical conduction at temperatures close to absolute zero.

Today we know that beyond first glance both fields, particle physics and superconductivity, are intimately entangled sharing a common ground that is not only of conceptual nature but also experimentally testable: The same excitation associated with the massive Higgs particle in a particle-physics framework should accordingly manifest in superconductors, the so-called Higgs mode. Unlike the single Higgs particle, the Higgs mode in superconductors is a collective mode of charged particles similar to, e.g., an acoustic wave travelling through liquids.

Similar to the Higgs particle at CERN, tracking down the Higgs mode had grown into a particularly demanding challenge. Being an excitation of comparably high energy it almost instantaneously decays into particle-hole pairs after its generation rendering the Higgs mode invisible in ordinary superconductors.

An international group of physicists led by Prof. Martin Dressel (University of Stuttgart) and Prof. Aviad Frydman (Tel Aviv University) recently found a suspiciously enhanced absorption of light in extremely thin films of strongly disordered superconductors which is shown to be in excellent agreement with the theoretically expected absorption caused by the Higgs mode, and is thus deemed the first direct proof of a stable Higgs mode in superconductors.

The obstacle of the ultra-short lifetime was circumvented by a trick inspired by relativistic theories: At very low temperatures, superconductors conduct electrical currents without any losses. However, being reduced to extremely thin films and subject to massive lattice distortion and defects, these materials may turn insulating once a critical degree of disorder, the quantum-critical point, is reached. Close to criticality, the so-far unstable Higgs mode is now well-defined, long-lived, and, moreover, directly detectable by optical measurements.

The German-Israeli collaboration now succeeded in tracing the Higgs mode´s gradual emergence with increasing disorder and found an astonishing agreement with theory. With this, on the one hand, the first direct experimental proof of a stable and well-defined Higgs mode in superconductors is accomplished, which in addition may inspire the search for the Higgs mode in similar disordered solid state systems, and, on the other hand, an intriguing concurrence between solid state and particle physics is unveiled.
More information:

Uwe Pracht, University of Stuttgart, 1. Physikalisches Institut, Tel.: +49(0)711/685-64941,
E-Mail: uwe.pracht@pi1.physik.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>