Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sharp-eyed Alma spots a flare on famous red giant star


Super-sharp observations with the telescope Alma have revealed what seems to be a gigantic flare on the surface of Mira, one of the closest and most famous red giant stars in the sky. Activity like this in red giants - similar to what we see in the Sun - comes as a surprise to astronomers. The discovery could help explain how winds from giant stars make their contribution to our galaxy's ecosystem.

New observations with Alma have given astronomers their sharpest ever view of the famous double star Mira. The images clearly show the two stars in the system, Mira A and Mira B, but that's not all. For the first time ever at millimetre wavelengths, they reveal details on the surface of Mira A.

This is an artist's impression of a giant flare on the surface of red giant Mira A. Behind the star, material is falling onto the star's tiny companion Mira B.

Credit: Katja Lindblom, CC BY-NC-ND 4.0

"Alma's vision is so sharp that we can begin to see details on the surface of the star. Part of the stellar surface is not just extremely bright, it also varies in brightness. This must be a giant flare, and we think it's related to a flare which X-ray telescopes observed some years ago", says Wouter Vlemmings, astronomer at Chalmers University of Technology, who led the team.

The team's results were recently published in the journal Astronomy & Astrophysics.

Red giants like Mira A are crucial components of our galaxy's ecosystem. As they near the end of their lives, they lose their outer layers in the form of uneven, smoky winds. These winds carry heavy elements that the stars have manufactured - out into space where they can form new stars and planets. Most of the carbon, oxygen, and nitrogen in our bodies was formed in stars and redistributed by their winds.

Mira - the name means "Wonderful" in Latin - has been known for centuries as one of the most famous variable stars in the sky. At its brightest, it can be clearly seen with the naked eye, but when it's at its faintest a telescope is needed. The star, 420 light years away in the constellation Cetus, is in fact a binary system, made up of two stars of about the same mass as the sun: one is a dense, hot white dwarf and the other a fat, cool, red giant, orbiting each other at a distance about the same as Pluto's average distance from the Sun.

"Mira is a key system for understanding how stars like our sun reach the end of their lives, and what difference it makes for an elderly star to have a close companion", says Sofia Ramstedt, astronomer at Uppsala University and co-author on the paper.

The Sun, our closest star, shows activity powered by magnetic fields, and this activity, sometimes in the form of solar storms, drives the particles that make up the solar wind which in its turn can create auroras on Earth.

"Seeing a flare on Mira A suggests that magnetic fields also have a role to play for red giants' winds", says Wouter Vlemmings.

The new images give astronomers their sharpest ever view of Mira B, which is so close to its companion that material flows from one star to the other.

"This is our clearest view yet of gas from Mira A that is falling towards Mira B" says Eamon O'Gorman, astronomer at Chalmers and member of the team.

The observations were carried out as part of Alma's first long-baseline observations. By placing the telescope's antennas at their maximum distance from each other, Alma reached its maximum resolution for the first time. Mira was one of several targets in the campaign, alongside a young solar system, a gravitationally lensed galaxy and an asteroid. Now Wouter Vlemmings and his team plan new observations of Mira and other similar stars.

"Alma has shown us details on the surface of Mira for the first time. Now we can begin to discover our closest red giants in detail that hasn't previously been possible", he says.

Robert Cumming | EurekAlert!

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>