Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharp-eyed Alma spots a flare on famous red giant star

01.06.2015

Super-sharp observations with the telescope Alma have revealed what seems to be a gigantic flare on the surface of Mira, one of the closest and most famous red giant stars in the sky. Activity like this in red giants - similar to what we see in the Sun - comes as a surprise to astronomers. The discovery could help explain how winds from giant stars make their contribution to our galaxy's ecosystem.

New observations with Alma have given astronomers their sharpest ever view of the famous double star Mira. The images clearly show the two stars in the system, Mira A and Mira B, but that's not all. For the first time ever at millimetre wavelengths, they reveal details on the surface of Mira A.


This is an artist's impression of a giant flare on the surface of red giant Mira A. Behind the star, material is falling onto the star's tiny companion Mira B.

Credit: Katja Lindblom, CC BY-NC-ND 4.0

"Alma's vision is so sharp that we can begin to see details on the surface of the star. Part of the stellar surface is not just extremely bright, it also varies in brightness. This must be a giant flare, and we think it's related to a flare which X-ray telescopes observed some years ago", says Wouter Vlemmings, astronomer at Chalmers University of Technology, who led the team.

The team's results were recently published in the journal Astronomy & Astrophysics.

Red giants like Mira A are crucial components of our galaxy's ecosystem. As they near the end of their lives, they lose their outer layers in the form of uneven, smoky winds. These winds carry heavy elements that the stars have manufactured - out into space where they can form new stars and planets. Most of the carbon, oxygen, and nitrogen in our bodies was formed in stars and redistributed by their winds.

Mira - the name means "Wonderful" in Latin - has been known for centuries as one of the most famous variable stars in the sky. At its brightest, it can be clearly seen with the naked eye, but when it's at its faintest a telescope is needed. The star, 420 light years away in the constellation Cetus, is in fact a binary system, made up of two stars of about the same mass as the sun: one is a dense, hot white dwarf and the other a fat, cool, red giant, orbiting each other at a distance about the same as Pluto's average distance from the Sun.

"Mira is a key system for understanding how stars like our sun reach the end of their lives, and what difference it makes for an elderly star to have a close companion", says Sofia Ramstedt, astronomer at Uppsala University and co-author on the paper.

The Sun, our closest star, shows activity powered by magnetic fields, and this activity, sometimes in the form of solar storms, drives the particles that make up the solar wind which in its turn can create auroras on Earth.

"Seeing a flare on Mira A suggests that magnetic fields also have a role to play for red giants' winds", says Wouter Vlemmings.

The new images give astronomers their sharpest ever view of Mira B, which is so close to its companion that material flows from one star to the other.

"This is our clearest view yet of gas from Mira A that is falling towards Mira B" says Eamon O'Gorman, astronomer at Chalmers and member of the team.

The observations were carried out as part of Alma's first long-baseline observations. By placing the telescope's antennas at their maximum distance from each other, Alma reached its maximum resolution for the first time. Mira was one of several targets in the campaign, alongside a young solar system, a gravitationally lensed galaxy and an asteroid. Now Wouter Vlemmings and his team plan new observations of Mira and other similar stars.

"Alma has shown us details on the surface of Mira for the first time. Now we can begin to discover our closest red giants in detail that hasn't previously been possible", he says.

Robert Cumming | EurekAlert!

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>