Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping a more than perfect wave

28.04.2015

Researchers of the Cluster of Excellence “Nanosystems Initiative Munich” (NIM), the Center for Nanoscience (CeNS) and the Augsburg Center for Innovative Technologies (ACIT) at Augsburg University, together with colleagues from the Institute for Integrative Nanoscience at the Leibniz Institute for Solid State and Materials Research (IFW) Dresden and the Johannes Kepler Universität (JKU) in Linz teamed up to realize the first synthesizer for tailored nanomechanical waves.

In their recent publication in "Nature Nanotechnology", NIM graduate Florian Schülein and his supervisor NIM-Professor Hubert Krenner at the chair of Experimental Physics I (Prof. Achim Wixforth) demonstrate, that nanoscale sound waves with different frequencies can be superimposed on a chip to program and synthesize a well-defined nanomechanical wave. They use these shaped waves for fast and deliberate nanomechanical control of quantum effects in a semiconductor artificial atom.


Artist impression of a nanomechanical synthesizer

© Christoph Hohmann/NIM

Back in the early 19th century, the French scientist Joseph Fourier showed that any wave can be composed of a well-defined combination of a fundamental tone and a series of overtones. This fundamental principle is used in innumerable everyday life consumer products. For example, music synthesizers like the famous ‘Hammond Organ’ generate sound using Fourier synthesis.

For MP3 encoding, the opposite procedure, Fourier analysis, is key to reach ultimate data compression. In their experiments, the team of physicists applies the fundamental principle of Fourier synthesis to generate nanomechanical sound waves of precisely defined shapes on a chip. Their approach is based on surface acoustic waves, nanoscale earthquakes, a technique Achim Wixforth and the Augsburg group are renown experts in.

“To gain full control of the shape of the nanoquake we had to develop an advanced design for the electrodes which generate the sound wave”, notes Florian Schülein. The team solved this problem by developing new electrode geometries. With these, they were able to excite not only a fundamental sine wave but also a large number of overtones at highest intensities at the same time. His supervisor, Hubert Krenner adds:

“These advanced transducers were key since all of a sudden we could really superimpose the different frequencies with unprecedented efficiency. When we combined the different frequencies with well-defined portions, and thus turned a simple sine wave into a square or triangular wave or even a short ‘kick’.”

To prove that they really generated the desired nano-wave, the researchers required fast nanoscopic ‘pressure sensors’. They used single quantum dots fabricated at IFW Dresden for this purpose. These quantum dots are nanoscopic islands which emit light in sharp spectral lines. “The emission wavelength of these artificial atoms delicately depends on the local deformation of the material,” Achim Wixforth explains.

Hence, using this opto-mechanical coupling, the nanomechanical wave was converted into an optical signal. Florian Schülein proudly adds: “Using our extremely fast stroboscope it was fantastic to see how the quantum dot spectral emission lines exactly move the way I programmed the wave!”

The Augsburg group is renowned for their pioneering work and application of surface acoustic waves. They apply these ‘nanoquakes’ to various types of nanosystems ranging from biophysical systems over microfluidics to fundamental physical effects such as the Quantum Hall Effect. All these experiments have attracted large attention worldwide and built the outstanding reputation of their research using their nanoquakes on a chip.

Based on this new breakthrough in the field of nanomechanics, researcher expect that quantum systems can be controlled in the best sense of the word quantum-mechanically using shaped and well behaved nanoquakes.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the Emmy Noether Programme (KR 3790/2-1), the Cluster of Excellence Nanosystems Initiative Munich (NIM), and Sonderforschungsbereich SFB 631, by BMBF via project QuaHL-Rep and by the European Union via Seventh Framework Programme project HANAS.

Reference:

Florian J. R. Schülein, Eugenio Zallo, Paola Atkinson, Oliver G. Schmidt, Rinaldo Trotta, Armando Rastelli, Achim Wixforth, and Hubert J. Krenner
Fourier synthesis of radiofrequency nanomechanical pulses with different shapes
Nature Nanotechnology – advanced online publication; doi:10.1038/nnano.2015.72 (2015)

Link: http://dx.doi.org/10.1038/nnano.2015.72

Contact:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de
Dr. Florian Schülein – florian.schuelein@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2015.72

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>