Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping a more than perfect wave

28.04.2015

Researchers of the Cluster of Excellence “Nanosystems Initiative Munich” (NIM), the Center for Nanoscience (CeNS) and the Augsburg Center for Innovative Technologies (ACIT) at Augsburg University, together with colleagues from the Institute for Integrative Nanoscience at the Leibniz Institute for Solid State and Materials Research (IFW) Dresden and the Johannes Kepler Universität (JKU) in Linz teamed up to realize the first synthesizer for tailored nanomechanical waves.

In their recent publication in "Nature Nanotechnology", NIM graduate Florian Schülein and his supervisor NIM-Professor Hubert Krenner at the chair of Experimental Physics I (Prof. Achim Wixforth) demonstrate, that nanoscale sound waves with different frequencies can be superimposed on a chip to program and synthesize a well-defined nanomechanical wave. They use these shaped waves for fast and deliberate nanomechanical control of quantum effects in a semiconductor artificial atom.


Artist impression of a nanomechanical synthesizer

© Christoph Hohmann/NIM

Back in the early 19th century, the French scientist Joseph Fourier showed that any wave can be composed of a well-defined combination of a fundamental tone and a series of overtones. This fundamental principle is used in innumerable everyday life consumer products. For example, music synthesizers like the famous ‘Hammond Organ’ generate sound using Fourier synthesis.

For MP3 encoding, the opposite procedure, Fourier analysis, is key to reach ultimate data compression. In their experiments, the team of physicists applies the fundamental principle of Fourier synthesis to generate nanomechanical sound waves of precisely defined shapes on a chip. Their approach is based on surface acoustic waves, nanoscale earthquakes, a technique Achim Wixforth and the Augsburg group are renown experts in.

“To gain full control of the shape of the nanoquake we had to develop an advanced design for the electrodes which generate the sound wave”, notes Florian Schülein. The team solved this problem by developing new electrode geometries. With these, they were able to excite not only a fundamental sine wave but also a large number of overtones at highest intensities at the same time. His supervisor, Hubert Krenner adds:

“These advanced transducers were key since all of a sudden we could really superimpose the different frequencies with unprecedented efficiency. When we combined the different frequencies with well-defined portions, and thus turned a simple sine wave into a square or triangular wave or even a short ‘kick’.”

To prove that they really generated the desired nano-wave, the researchers required fast nanoscopic ‘pressure sensors’. They used single quantum dots fabricated at IFW Dresden for this purpose. These quantum dots are nanoscopic islands which emit light in sharp spectral lines. “The emission wavelength of these artificial atoms delicately depends on the local deformation of the material,” Achim Wixforth explains.

Hence, using this opto-mechanical coupling, the nanomechanical wave was converted into an optical signal. Florian Schülein proudly adds: “Using our extremely fast stroboscope it was fantastic to see how the quantum dot spectral emission lines exactly move the way I programmed the wave!”

The Augsburg group is renowned for their pioneering work and application of surface acoustic waves. They apply these ‘nanoquakes’ to various types of nanosystems ranging from biophysical systems over microfluidics to fundamental physical effects such as the Quantum Hall Effect. All these experiments have attracted large attention worldwide and built the outstanding reputation of their research using their nanoquakes on a chip.

Based on this new breakthrough in the field of nanomechanics, researcher expect that quantum systems can be controlled in the best sense of the word quantum-mechanically using shaped and well behaved nanoquakes.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the Emmy Noether Programme (KR 3790/2-1), the Cluster of Excellence Nanosystems Initiative Munich (NIM), and Sonderforschungsbereich SFB 631, by BMBF via project QuaHL-Rep and by the European Union via Seventh Framework Programme project HANAS.

Reference:

Florian J. R. Schülein, Eugenio Zallo, Paola Atkinson, Oliver G. Schmidt, Rinaldo Trotta, Armando Rastelli, Achim Wixforth, and Hubert J. Krenner
Fourier synthesis of radiofrequency nanomechanical pulses with different shapes
Nature Nanotechnology – advanced online publication; doi:10.1038/nnano.2015.72 (2015)

Link: http://dx.doi.org/10.1038/nnano.2015.72

Contact:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de
Dr. Florian Schülein – florian.schuelein@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2015.72

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>