Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeds of black holes could be revealed by gravitational waves detected in space

27.06.2016

Scientists led by Durham University's Institute for Computational Cosmology ran the huge cosmological simulations that can be used to predict the rate at which gravitational waves caused by collisions between the monster black holes might be detected.

The amplitude and frequency of these waves could reveal the initial mass of the seeds from which the first black holes grew since they were formed 13 billion years ago and provide further clues about what caused them and where they formed, the researchers said.


Gas and stars in a slice of the EAGLE simulations at the present day. The intensity shows the gas density, while the color encodes the gas temperature. Researchers used the EAGLE simulations to predict the rate at which gravitational waves caused by collisions between supermassive black holes might be detected.

Credit: The EAGLE project/Stuart McAlpine

The research is being presented today (Monday, June 27, 2016) at the Royal Astronomical Society's National Astronomy Meeting in Nottingham, UK. It was funded by the Science and Technology Facilities Council, the European Research Council and the Belgian Interuniversity Attraction Poles Programme.

The study combined simulations from the EAGLE project - which aims to create a realistic simulation of the known Universe inside a computer - with a model to calculate gravitational wave signals.

Two detections of gravitational waves caused by collisions between supermassive black holes should be possible each year using space-based instruments such as the Evolved Laser Interferometer Space Antenna (eLISA) detector that is due to launch in 2034, the researchers said.

In February the international LIGO and Virgo collaborations announced that they had detected gravitational waves for the first time using ground-based instruments and in June reported a second detection.

As eLISA will be in space - and will be at least 250,000 times larger than detectors on Earth - it should be able to detect the much lower frequency gravitational waves caused by collisions between supermassive black holes that are up to a million times the mass of our sun.

Current theories suggest that the seeds of these black holes were the result of either the growth and collapse of the first generation of stars in the Universe; collisions between stars in dense stellar clusters; or the direct collapse of extremely massive stars in the early Universe.

As each of these theories predicts different initial masses for the seeds of supermassive black hole seeds, the collisions would produce different gravitational wave signals.

This means that the potential detections by eLISA could help pinpoint the mechanism that helped create supermassive black holes and when in the history of the Universe they formed.

Lead author Jaime Salcido, PhD student in Durham University's Institute for Computational Cosmology, said: "Understanding more about gravitational waves means that we can study the Universe in an entirely different way.

"These waves are caused by massive collisions between objects with a mass far greater than our sun.

"By combining the detection of gravitational waves with simulations we could ultimately work out when and how the first seeds of supermassive black holes formed."

Co- author Professor Richard Bower, of Durham University's Institute for Computational Cosmology, added: "Black holes are fundamental to galaxy formation and are thought to sit at the centre of most galaxies, including our very own Milky Way.

"Discovering how they came to be where they are is one of the unsolved problems of cosmology and astronomy.

"Our research has shown how space based detectors will provide new insights into the nature of supermassive black holes."

Gravitational waves were first predicted 100 years ago by Albert Einstein as part of his Theory of General Relativity.

The waves are concentric ripples caused by violent events in the Universe that squeeze and stretch the fabric of space time but most are so weak they cannot be detected.

LIGO detected gravitational waves using ground-based instruments, called interferometers, that use laser beams to pick up subtle disturbances caused by the waves.

eLISA will work in a similar way, detecting the small changes in distances between three satellites that will orbit the sun in a triangular pattern connected by beams from lasers in each satellite.

In June it was reported that the LISA Pathfinder, the forerunner to eLISA, had successfully demonstrated the technology that opens the door to the development of a large space observatory capable of detecting gravitational waves in space.

Media Contact

Leighton Kitson
leighton.kitson@durham.ac.uk
44-019-133-46074

 @durham_uni

http://www.dur.ac.uk 

Leighton Kitson | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>