Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seasonal, year-long cycles seen on the Sun

09.04.2015

Our sun is constantly changing. It goes through cycles of activity - swinging between times of relative calm and times when frequent explosions on its surface can fling light, particles and energy out into space. This activity cycle peaks approximately every 11 years. New research shows evidence of a shorter time cycle as well, with activity waxing and waning over the course of about 330 days.

Understanding when to expect such bursts of solar activity is crucial to successfully forecast the sun's eruptions, which can drive solar storms at Earth. These space weather events can interfere with satellite electronics, GPS navigation, and radio communications. The quasi-annual variations in space weather seem to be driven by changes in bands of strong magnetic field that are present in each solar hemisphere, said researchers in a paper published on April 7, 2015, in Nature Communications.


Bands of magnetized solar material march toward the sun's equator. The way the bands in each hemisphere interact leads to a 330-day cycle of waxing and waning activity on the sun that can be as strong as the more well-studied 11-year solar cycle.

Credit: S. McIntosh

"What we're looking at here is a massive driver of solar storms," said Scott McIntosh, lead author of the paper and director of the High Altitude Observatory of the National Center for Atmospheric Research in Boulder, Colorado. "By better understanding how these activity bands form in the sun and cause these seasonal instabilities, we can greatly improve forecasts of space weather."

The new study is one of several by the research team to examine what creates the magnetic bands and how they influence solar cycles. McIntosh and his co-authors detected the bands by drawing on a host of NASA satellites and ground-based observatories that observe the sun and its output -- from the constant flow of particles in the solar wind to large explosions such as solar flares or giant eruptions of solar material called coronal mass ejections, or CMEs.

The scientists note that the changes in the magnetic field in the bands gives rise to a 330-day activity cycle on the sun that is observable but has often been downplayed and overlooked when trying to seek the cause of the sun's longer, 11-year cycle.

"People have not paid much attention to this nearly-annual cycle," said McIntosh. "But it's such a driver of space weather that we really do need to focus on it. Cycles over this time frame are observed in all sorts of output from the sun: the sun's radiance, the solar wind, solar flares, CMEs."

Magnetic band interaction can also help explain a puzzle first discovered in the 1960s: Why does the number of powerful solar flares and CMEs peak a year or more after the maximum number of sunspots? This lag is known as the Gnevyshev Gap, after the Soviet scientist who first noticed the pattern. The answer appears to also depend on two activity bands.

Having one band located in each solar hemisphere provides an opportunity for them to mix -- magnetic field from one band effectively leaking into the other -- creating more unstable active regions on the sun and leading to more flares and CMEs. In other papers, scientists have shown that this process happens only after the sunspot maximum.

In doing their analysis on band interaction the scientists noticed that the bands themselves undergo strong quasi-annual variations, taking place separately in both the northern and southern hemispheres. Those quasi-annual variations in magnetism could be almost as large in magnitude as those of the more familiar, approximately 11-year solar cycle, giving rise to the appearance of stormy seasons.

"The activity bands on the sun have very slow-moving waves that can expand and warp," said Robert Leamon, co-author on the paper at Montana State University in Bozeman and NASA Headquarters in Washington. "Sometimes this results in magnetic field leaking from one band to the other. In other cases, the warp drags magnetic field from deep in the solar interior and pushes it toward the surface."

The surges of magnetic fuel from the sun's interior can catastrophically destabilize the existing corona, the sun's outermost atmosphere. They are a driving force behind the most intense solar storms.

Researchers can turn to advanced computer simulations and focused observations to learn more about the influence of these bands on solar activity. McIntosh suggested that this could be assisted by a proposed network of satellites observing the sun, much as the global networks of satellites around Earth has significantly advanced terrestrial weather models since the 1960s.

"If you understand what the patterns of solar activity are telling you, you'll know whether we're in a stormy phase or quiet phase in each hemisphere," McIntosh said. "If we can combine these pieces of observational information with modeling efforts, then space weather forecast skill can go through the roof."

###

The research was funded by NASA and the National Science Foundation, which is NCAR's sponsor.

For more information on the sun's magnetic activity bands:

http://www.nasa.gov/content/goddard/researchers-discover-new-clues-to-determining-the-solar-cycle/

Susan Hendrix | EurekAlert!

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>