Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sculpting solar systems: Magnetic fields seen for first time


Astronomers have caught their first glimpse of the invisible magnetic fields that sculpt solar systems.

Looking at a bright, nearby baby star and the dust swirling in its cradle, astronomers from the University of Illinois and six collaborating institutions were able to make out the shape of the magnetic field surrounding the star. The findings, which present a new way of looking at star and planet formation, were published in the journal Nature.

Photo by L. Brian Stauffer

Illinois astronomy professor Leslie Looney (left) and former graduate student Ian Stephens, now at Boston University, studied a newborn star to see, for the first time, the magnetic field that will shape the planets of that star’s solar system.

According to University of Illinois astronomy professor Leslie Looney, who led the effort with his then-student Ian Stephens, now at Boston University, magnetic fields play important roles in astronomy.

“Magnetic fields course through these open areas of space with these big clouds of gas and dust; those are the cradles of baby stars,” Looney said. “The disk of dust and debris around the baby star is where planets are going to form, where the seeds of a solar system are sown. There are some theories about how that works, and a lot of them involve magnetic fields. But no one has ever detected a magnetic field in a disk before, so that was an essential missing piece of information.”

The astronomers focused on a very bright, newborn star named HL Tau, located a mere 450 light-years away – a short distance on astronomical scales. They used a telescope in California that the U. of I. operates in part, called the Combined Array for Research in Millimeter-wave Astronomy (CARMA). CARMA allowed the researchers to look at the dust around HL Tau at two different angles, like looking through polarized sunglasses. Dust in space is an oblong shape and aligns itself with the magnetic field, so the astronomers were able to tell the shape of the field by the tiny differences in how the dust filtered the light from the star.

They found that the magnetic field plays a role in shaping baby star systems. Furthermore, the shape they saw was somewhat surprising – a toroid, or twisted-donut shape, rather than shooting out vertically from the poles of the star as had been widely theorized.

“Now we can actually say there is a morphology, and it’s consistent with twisted toroidal fields. That means on these size scales where planet formation is happening, the field is important,” Stephens said. “It’s a different way of looking at star cradles, and a way we’ve not been able to do in the past. You’re able to get extra information you’ve never had before, reveal morphology and maybe look for differences that tell you more about the structure than you would with just looking at dust emission.”

The next step for Looney and his collaborators is to measure the magnetic field in other nearby stars, using a larger telescope with greater sensitivity. They also intend to work more closely with theorists to understand what shapes the magnetic fields and to integrate magnetic field parameters into existing star and planet formation models.

“Our models have used gas information and kinematics, but the magnetic fields were missing all that time, and that puts huge constraints on all the models,” Looney said. “We need to connect the motion of the system with how that changes the magnetic fields, and see if we can better constrain those models. Then from that, we can begin to understand the properties of the forming solar system. Magnetic fields are really an untapped way to probe a star disk.”

The National Science Foundation supported this work.

Editor's note: To reach Leslie Looney, call 217-244-3615; email
The paper, “Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star,” is available online.

Liz Ahlberg | University of Illinois

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>