Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists set quantum speed limit

23.01.2015

Proof of energy time uncertainty principle puts limits on quantum computing

University of California, Berkeley, scientists have proved a fundamental relationship between energy and time that sets a "quantum speed limit" on processes ranging from quantum computing and tunneling to optical switching.


The speed limit, that is, the minimal time to transition between two easily distinguishable states, such as the north and south poles representing up and down states of a quantum spin (top), is characterized by a well-known relationship. But the speed limit between two states not entirely distinguishable, which correspond to states of arbitrary latitude and longitude whether on or within the sphere of all possible states of a quantum spin (bottom), was unknown until two UC Berkeley chemical physicists calculated it.

Credit: Ty Volkoff image, UC Berkeley

The energy-time uncertainty relationship is the flip side of the Heisenberg uncertainty principle, which sets limits on how precisely you can measure position and speed, and has been the bedrock of quantum mechanics for nearly 100 years. It has become so well-known that it has infected literature and popular culture with the idea that the act of observing affects what we observe.

Not long after German physicist Werner Heisenberg, one of the pioneers of quantum mechanics, proposed his relationship between position and speed, other scientists deduced that energy and time were related in a similar way, implying limits on the speed with which systems can jump from one energy state to another. The most common application of the energy-time uncertainty relationship has been in understanding the decay of excited states of atoms, where the minimum time it takes for an atom to jump to its ground state and emit light is related to the uncertainty of the energy of the excited state.

"This is the first time the energy-time uncertainty principle has been put on a rigorous basis - our arguments don't appeal to experiment, but come directly from the structure of quantum mechanics," said chemical physicist K. Birgitta Whaley, director of the Berkeley Quantum Information and Computation Center and a UC Berkeley professor of chemistry. "Before, the principle was just kind of thrown into the theory of quantum mechanics."

The new derivation of the energy-time uncertainty has application for any measurement involving time, she said, particularly in estimating the speed with which certain quantum processes - such as calculations in a quantum computer - will occur.

"The uncertainty principle really limits how precise your clocks can be," said first author Ty Volkoff, a graduate student who just received his Ph.D. in chemistry from UC Berkeley. "In a quantum computer, it limits how fast you can go from one state to the other, so it puts limits on the clock speed of your computer."

The new proof could even affect recent estimates of the computational power of the universe, which rely on the energy-time uncertainty principle.

Volkoff and Whaley included the derivation of the uncertainty principle in a larger paper devoted to a detailed analysis of distinguishable quantum states that appeared online Dec. 18 in the journal Physical Review A.

The problem of precision measurement

Heisenberg's uncertainty principle, proposed in 1927, states that it's impossible to measure precisely both the position and speed - or more properly, momentum - of an object. That is, the uncertainty in measurement of the position times the uncertainty in measurement of momentum will always be greater than or equal to Planck's constant. Planck's constant is an extremely small number (6.62606957 × 10-34 square meter-kilogram/second) that describes the graininess of space.

To physicists, an equally useful principle relates the uncertainties of measuring both time and energy: The variance of the energy of a quantum state times the lifetime of the state cannot be less than Planck's constant.

"When students first learn about time-energy uncertainty, they learn about the lifetime of atomic states or emission line widths in spectroscopy, which are very physical but empirical notions," Volkoff said.

This observed relationship was first addressed mathematically in a 1945 paper by two Russian physicists who dealt only with transitions between two obviously distinct energy states. The new analysis by Volkoff and Whaley applies to all types of experiments, including those in which the beginning and end states may not be entirely distinct. The analysis allows scientists to calculate how long it will take for such states to be distinguishable from one another at any level of certainty.

"In many experiments that examine the time evolution of a quantum state, the experimenters are dealing with endpoints where the states are not completely distinguishable," Volkoff said. "But you couldn't determine the minimum time that process would take from our current understanding of the energy-time uncertainty."

Most experiments dealing with light, as in the fields of spectroscopy and quantum optics, involve states that are not entirely distinct, he said. These states evolve on time scales of the order of femtoseconds - millionths of a billionth of a second.

Alternatively, scientists working on quantum computers aim to establish entangled quantum states that evolve and perform a computation with speeds on the order of nanoseconds.

"Our analysis reveals that a minimal finite length of time must elapse in order to achieve a given success rate for distinguishing an initial quantum state from its time-evolved image using an optimal measurement," Whaley said.

The new analysis could help determine the times required for quantum tunneling, such as the tunneling of electrons through the band-gap of a semiconductor or the tunneling of atoms in biological proteins.

It also could be useful in a new field called "weak measurement," which involves tracking small changes in a quantum system, such as entangled qubits in a quantum computer, as the system evolves. No one measurement sees a state that is purely distinct from the previous state.

###

The work was funded by the National Science Foundation.

Media Contact

Robert Sanders
rlsanders@berkeley.edu
510-643-6998

 @UCBerkeleyNews

http://www.berkeley.edu 

Robert Sanders | EurekAlert!

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>