Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists set quantum speed limit

23.01.2015

Proof of energy time uncertainty principle puts limits on quantum computing

University of California, Berkeley, scientists have proved a fundamental relationship between energy and time that sets a "quantum speed limit" on processes ranging from quantum computing and tunneling to optical switching.


The speed limit, that is, the minimal time to transition between two easily distinguishable states, such as the north and south poles representing up and down states of a quantum spin (top), is characterized by a well-known relationship. But the speed limit between two states not entirely distinguishable, which correspond to states of arbitrary latitude and longitude whether on or within the sphere of all possible states of a quantum spin (bottom), was unknown until two UC Berkeley chemical physicists calculated it.

Credit: Ty Volkoff image, UC Berkeley

The energy-time uncertainty relationship is the flip side of the Heisenberg uncertainty principle, which sets limits on how precisely you can measure position and speed, and has been the bedrock of quantum mechanics for nearly 100 years. It has become so well-known that it has infected literature and popular culture with the idea that the act of observing affects what we observe.

Not long after German physicist Werner Heisenberg, one of the pioneers of quantum mechanics, proposed his relationship between position and speed, other scientists deduced that energy and time were related in a similar way, implying limits on the speed with which systems can jump from one energy state to another. The most common application of the energy-time uncertainty relationship has been in understanding the decay of excited states of atoms, where the minimum time it takes for an atom to jump to its ground state and emit light is related to the uncertainty of the energy of the excited state.

"This is the first time the energy-time uncertainty principle has been put on a rigorous basis - our arguments don't appeal to experiment, but come directly from the structure of quantum mechanics," said chemical physicist K. Birgitta Whaley, director of the Berkeley Quantum Information and Computation Center and a UC Berkeley professor of chemistry. "Before, the principle was just kind of thrown into the theory of quantum mechanics."

The new derivation of the energy-time uncertainty has application for any measurement involving time, she said, particularly in estimating the speed with which certain quantum processes - such as calculations in a quantum computer - will occur.

"The uncertainty principle really limits how precise your clocks can be," said first author Ty Volkoff, a graduate student who just received his Ph.D. in chemistry from UC Berkeley. "In a quantum computer, it limits how fast you can go from one state to the other, so it puts limits on the clock speed of your computer."

The new proof could even affect recent estimates of the computational power of the universe, which rely on the energy-time uncertainty principle.

Volkoff and Whaley included the derivation of the uncertainty principle in a larger paper devoted to a detailed analysis of distinguishable quantum states that appeared online Dec. 18 in the journal Physical Review A.

The problem of precision measurement

Heisenberg's uncertainty principle, proposed in 1927, states that it's impossible to measure precisely both the position and speed - or more properly, momentum - of an object. That is, the uncertainty in measurement of the position times the uncertainty in measurement of momentum will always be greater than or equal to Planck's constant. Planck's constant is an extremely small number (6.62606957 × 10-34 square meter-kilogram/second) that describes the graininess of space.

To physicists, an equally useful principle relates the uncertainties of measuring both time and energy: The variance of the energy of a quantum state times the lifetime of the state cannot be less than Planck's constant.

"When students first learn about time-energy uncertainty, they learn about the lifetime of atomic states or emission line widths in spectroscopy, which are very physical but empirical notions," Volkoff said.

This observed relationship was first addressed mathematically in a 1945 paper by two Russian physicists who dealt only with transitions between two obviously distinct energy states. The new analysis by Volkoff and Whaley applies to all types of experiments, including those in which the beginning and end states may not be entirely distinct. The analysis allows scientists to calculate how long it will take for such states to be distinguishable from one another at any level of certainty.

"In many experiments that examine the time evolution of a quantum state, the experimenters are dealing with endpoints where the states are not completely distinguishable," Volkoff said. "But you couldn't determine the minimum time that process would take from our current understanding of the energy-time uncertainty."

Most experiments dealing with light, as in the fields of spectroscopy and quantum optics, involve states that are not entirely distinct, he said. These states evolve on time scales of the order of femtoseconds - millionths of a billionth of a second.

Alternatively, scientists working on quantum computers aim to establish entangled quantum states that evolve and perform a computation with speeds on the order of nanoseconds.

"Our analysis reveals that a minimal finite length of time must elapse in order to achieve a given success rate for distinguishing an initial quantum state from its time-evolved image using an optimal measurement," Whaley said.

The new analysis could help determine the times required for quantum tunneling, such as the tunneling of electrons through the band-gap of a semiconductor or the tunneling of atoms in biological proteins.

It also could be useful in a new field called "weak measurement," which involves tracking small changes in a quantum system, such as entangled qubits in a quantum computer, as the system evolves. No one measurement sees a state that is purely distinct from the previous state.

###

The work was funded by the National Science Foundation.

Media Contact

Robert Sanders
rlsanders@berkeley.edu
510-643-6998

 @UCBerkeleyNews

http://www.berkeley.edu 

Robert Sanders | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>