Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make 'squarest' ice crystals ever

11.07.2017

Ability to study cubic ice in the lab could aid climate change models

You won't find ice cubes like this in your freezer.


Researchers created ice crystals with a near-perfect cubic arrangement of water molecules, in order to better understand how high-altitude ice clouds interact with sunlight and the atmosphere. In this X-ray diffraction image, the ice crystals have scattered X-rays to create concentric rings, which are a fingerprint of the molecular arrangement within the crystals.

Image courtesy of The Ohio State University

An international team of scientists has set a new record for creating ice crystals that have a near-perfect cubic arrangement of water molecules--a form of ice that may exist in the coldest high-altitude clouds but is extremely hard to make on Earth.

The ability to make and study cubic ice in the laboratory could improve computer models of how clouds interact with sunlight and the atmosphere--two keys to understanding climate change, said Barbara Wyslouzil, project leader and professor of chemical and biomolecular engineering at The Ohio State University.

It could also enhance our understanding of water - one of the most important molecules for life on our planet.

Seen under a microscope, normal water ice--everything from frozen ponds, to snow, to the ice we make at home--is made of crystals with hexagonal symmetry, Wyslouzil explained. But with only a slight change in how the water molecules are arranged in ice, the crystals can take on a cubic form.

So far, researchers have used the presence of cold cubic ice clouds high above the earth's surface to explain interesting halos observed around the sun, as well as the presence of triangular ice crystals in the atmosphere. Scientists have struggled for decades to make cubic ice in the laboratory, but because the cubic form is unstable, the closest anyone has come is to make hybrid crystals that are around 70 percent cubic, 30 percent hexagonal.

In a paper published in the Journal of Physical Chemistry Letters, Wyslouzil, graduate research associate Andrew Amaya and their collaborators describe how they were able to create frozen water droplets that were nearly 80 percent cubic.

"While 80 percent might not sound 'near perfect,' most researchers no longer believe that 100 percent pure cubic ice is attainable in the lab or in nature," she said. "So the question is, how cubic can we make it with current technology? Previous experiments and computer simulations observed ice that is about 75 percent cubic, but we've exceeded that."

To make the highly cubic ice, the researchers drew nitrogen and water vapor through nozzles at supersonic speeds. When the gas expanded, it cooled and formed droplets a hundred thousand times smaller than the average raindrop. These droplets were highly supercooled, meaning that they were liquid well below the usual freezing temperature of 32 degrees Fahrenheit (0 degrees Celsius). In fact, the droplets remained liquid until about -55 degrees Fahrenheit (around -48 degrees Celsius) and then froze in about one millionth of a second.

To measure the cubicity of the ice formed in the nozzle, researchers performed X-ray diffraction experiments at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in Menlo Park, CA. There, they hit the droplets with the high-intensity X-ray laser from LCLS and recorded the diffraction pattern on an X-ray camera. They saw concentric rings at wavelengths and intensities that indicated the crystals were around 80 percent cubic.

The extremely low temperatures and rapid freezing were crucial to forming cubic ice, Wyslouzil said: "Since liquid water drops in high-altitude clouds are typically supercooled, there is a good chance for cubic ice to form there."

Exactly why it was possible to make crystals with around 80 percent cubicity is currently unknown. But, then again, exactly how water freezes on the molecular level is also unknown.

"When water freezes slowly, we can think of ice as being built from water molecules the way you build a brick wall, one brick on top of the other," said Claudiu Stan, a research associate at the Stanford PULSE Institute at SLAC and partner in the project. "But freezing in high-altitude clouds happens too fast for that to be the case--instead, freezing might be thought as starting from a disordered pile of bricks that hastily rearranges itself to form a brick wall, possibly containing defects or having an unusual arrangement. This kind of crystal-making process is so fast and complex that we need sophisticated equipment just to begin to see what is happening. Our research is motivated by the idea that in the future we can develop experiments that will let us see crystals as they form."

###

Additional co-authors on the paper were from Ohio State, SLAC, the National University of Singapore, Stockholm University, KTH Royal Institute of Technology, Brookhaven National Laboratory and the National Science Foundation BioXFEL Science and Technology Center. The research was funded by the National Science Foundation, the U.S. Department of Energy and SLAC. The use of LCLS was supported by the U.S. Department of Energy Office of Science.

Contacts:

Barbara Wyslouzil, 614-688-3583; wyslouzil.1@osu.edu

Claudiu Stan, cstan@slac.stanford.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>