Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists' discovery of zebra stripes in space resolves a half-century mystery

15.07.2015

Study by UCLA researchers and others could explain mysterious plasma waves in space

In the 1960s, NASA launched six satellites to study the Earth's atmosphere, magnetosphere and the space between Earth and the moon. Using observations from those satellites, Christopher Russell, a UCLA graduate student at the time, detected mysterious plasma waves in the Van Allen radiation belts, the donut-shaped rings surrounding the Earth that contain high-energy particles trapped by the planet's magnetic field.


The Earth's magnetosphere is home to the plasma waves being studied by Yuri Shprits and colleagues.

Credit: NASA

Referred to as equatorial noise or "Russell noise," in tribute to Russell -- who is now a professor of space physics and planetary science at UCLA -- the waves are among the most frequently observed emissions in the near-Earth space. But until recently, scientists could not explain how these waves are excited.

Now, after nearly a half century, the mystery has been solved -- by a team co-led by another UCLA scientist.

Yuri Shprits, a research geophysicist in the UCLA College, and his colleagues discovered the structure of these waves when they are very close to the equator. The scientists observed 13 equally spaced lines measured by two European Space Agency Cluster satellites, and found highly structured wave spectrograms that look like a zebra pedestrian crossing.

"It's truly remarkable how nature managed to draw such clear, very narrow, and periodic lines in space," said Shprits, who led the study with Michael Balikhin of the University of Sheffield.

The finding represents a major advance because the high-energy particles can be harmful for satellites and humans in space. The research is reported in the journal Nature Communications.

The European Cluster spacecraft observed ring distributions of protons in space that provide the energy for the plasma waves. Modelling of waves based on these observations provided additional evidence that waves are excited by so-called proton ring distributions.

Scientists have been especially interested in equatorial noise because it can accelerate particles in the Van Allen belts to high energies and cause the particles to disappear into the atmosphere. This phenomenon may have important implications for space weather and may play an important role in the acceleration and scattering of electrons and ions by these waves that can cause problems ranging from minor anomalies to the complete failure of critical satellites. Better understanding of space radiation will be instrumental in better protecting astronauts and equipment, Shprits said.

Shprits added that similar wave generation mechanisms may also be taking place in the magnetospheres of the outer planets, close to the sun and in distant corners of the universe.

Russell, who also is the principal investigator of NASA's Dawn mission, was pleased with the findings. "It is interesting that with Yuri's work, almost a half century later, scientists are finally making the measurements in space that explain the surprising observations made in 1966 and reported in my 1968 thesis," he said. "The waves were a real a puzzle, and now they make much more sense."

The wave modelling was done by Lunjin Chen, who received his doctorate at UCLA in 2011 and is now an assistant professor at the University of Texas, Dallas.

###

Shprits was honored by President Barack Obama in 2012 with a Presidential Early Career Award for Scientists and Engineers for his innovative research. The Nature Communications study was funded by the PECASE award (NASA grant NNX10AK99G), and by the National Science Foundation (GEM AGS-1203747) and the University of California Office of the President (12-LR-235337).

Stuart Wolpert | EurekAlert!

Further reports about: Earth Los Angeles NASA Nature UCLA equatorial high-energy particles satellites waves zebra

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>