Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists' discovery of zebra stripes in space resolves a half-century mystery

15.07.2015

Study by UCLA researchers and others could explain mysterious plasma waves in space

In the 1960s, NASA launched six satellites to study the Earth's atmosphere, magnetosphere and the space between Earth and the moon. Using observations from those satellites, Christopher Russell, a UCLA graduate student at the time, detected mysterious plasma waves in the Van Allen radiation belts, the donut-shaped rings surrounding the Earth that contain high-energy particles trapped by the planet's magnetic field.


The Earth's magnetosphere is home to the plasma waves being studied by Yuri Shprits and colleagues.

Credit: NASA

Referred to as equatorial noise or "Russell noise," in tribute to Russell -- who is now a professor of space physics and planetary science at UCLA -- the waves are among the most frequently observed emissions in the near-Earth space. But until recently, scientists could not explain how these waves are excited.

Now, after nearly a half century, the mystery has been solved -- by a team co-led by another UCLA scientist.

Yuri Shprits, a research geophysicist in the UCLA College, and his colleagues discovered the structure of these waves when they are very close to the equator. The scientists observed 13 equally spaced lines measured by two European Space Agency Cluster satellites, and found highly structured wave spectrograms that look like a zebra pedestrian crossing.

"It's truly remarkable how nature managed to draw such clear, very narrow, and periodic lines in space," said Shprits, who led the study with Michael Balikhin of the University of Sheffield.

The finding represents a major advance because the high-energy particles can be harmful for satellites and humans in space. The research is reported in the journal Nature Communications.

The European Cluster spacecraft observed ring distributions of protons in space that provide the energy for the plasma waves. Modelling of waves based on these observations provided additional evidence that waves are excited by so-called proton ring distributions.

Scientists have been especially interested in equatorial noise because it can accelerate particles in the Van Allen belts to high energies and cause the particles to disappear into the atmosphere. This phenomenon may have important implications for space weather and may play an important role in the acceleration and scattering of electrons and ions by these waves that can cause problems ranging from minor anomalies to the complete failure of critical satellites. Better understanding of space radiation will be instrumental in better protecting astronauts and equipment, Shprits said.

Shprits added that similar wave generation mechanisms may also be taking place in the magnetospheres of the outer planets, close to the sun and in distant corners of the universe.

Russell, who also is the principal investigator of NASA's Dawn mission, was pleased with the findings. "It is interesting that with Yuri's work, almost a half century later, scientists are finally making the measurements in space that explain the surprising observations made in 1966 and reported in my 1968 thesis," he said. "The waves were a real a puzzle, and now they make much more sense."

The wave modelling was done by Lunjin Chen, who received his doctorate at UCLA in 2011 and is now an assistant professor at the University of Texas, Dallas.

###

Shprits was honored by President Barack Obama in 2012 with a Presidential Early Career Award for Scientists and Engineers for his innovative research. The Nature Communications study was funded by the PECASE award (NASA grant NNX10AK99G), and by the National Science Foundation (GEM AGS-1203747) and the University of California Office of the President (12-LR-235337).

Stuart Wolpert | EurekAlert!

Further reports about: Earth Los Angeles NASA Nature UCLA equatorial high-energy particles satellites waves zebra

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>