12.10.2017

The famous three-body problem can be traced back to Isaac Newton in 1680s, thereafter Lagrange, Euler, Poincare and so on. Studies on the three-body problem leaded to the discovery of the so-called sensitivity dependence of initial condition (SDIC) of chaotic dynamic system. Nowadays, the chaotic dynamics is widely regarded as the third great scientific revolution in physics in 20th century, comparable to the relativity and the quantum mechanics. Thus, the studies on three-body problem have very important scientific meanings.

Poincare in 1890 revealed that trajectories of three-body systems are commonly non-periodic, i.e. not repeating. This can explain why it is so hard to gain periodic orbits of three-body system.

In the 300 years since three-body problem was first recognized, only three families of periodic orbits had been found, until 2013 when Suvakov and Dmitrasinovic [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum (see http://www.

Currently, two scientists, XiaoMing Li and ShiJun Liao at Shanghai Jiaotong University, China, successfully gained 695 families of periodic orbits of the above-mentioned Newtonian planar three-body system by means of national supercomputer TH-2 at Guangzhou, China, which are published online via SCIENCE CHINA-Physics Mechanics Astronomy, 2017, Vol. 60, No. 12: 129511. The movies of these orbits are given on the website http://numericaltank.

... more about:

»CNS »Simulation »angular momentum »computer science »numerical simulation »orbits »three-body systems

»CNS »Simulation »angular momentum »computer science »numerical simulation »orbits »three-body systems

These 695 periodic orbits include the well-known figure-eight family found by Moore in 1993, the 11 families found by Suvakov and Dmitrasinovic in 2013, and especially more than 600 new families that have never been reported.

The two scientists used the so-called "Clean Numerical Simulation (CNS)", a new numerical strategy for reliable simulations of chaotic dynamic systems proposed by the second author in 2009, which is based on high enough order of Taylor series and multiple precision data with many enough significant digits, plus a convergence/reliability check.

The CNS can reduce truncation error and round-off error so greatly that numerical noises are negligible in a long enough interval of time, thus more periodic orbits of the three-body system can be gained.

As pointed out by Montgomery in 1998, each periodic orbit in real space of the three-body system corresponds to a closed curve on the so-called "shape sphere", which is characterized by its topology using the so-called "free group element".

The averaged period of an orbit is equal to the period of the orbit divided by the length of the corresponding free group element. These 695 families suggest that there should exist the quasi Kepler's third law: the square of the average period times the cube of the total kinetic and potential energy approximately equals to a constant. The generalized Kepler's third law reveals that the three-body system has something in common, which might deepen our understandings and enrich our knowledges about three-body system.

"The discovery of the more than 600 new periodic orbits is mainly due to the advance in computer science and the use of the new strategy of numerical simulation for chaotic dynamic systems, namely the CNS", spoke the two scientists. It should be emphasized that 243 more new periodic orbits of the three-body system are found by means of the CNS. In other words, if traditional algorithms in double precision were used, about 40% new periodic orbits would be lost. This indicates the novelty and originality of the Clean Numerical Simulation (CNS), since any new methods must bring something completely new/different.

As shown in Figure 1, many pictures of these newly-found periodic orbits of the three-body system are beautiful and elegant, like modern paintings. "We are shocked and captivated by the perfect of them", spoke the two scientists.

###

See the article:

XiaoMing Li, and ShiJun Liao, More than six hundred new families of Newtonian periodic planar collisionless three-body orbits, *Sci. China-Phys. Mech. Astron.* 60, 129511 (2017), doi: 10.1007/s11433-017-9078-5 https:/

LIAO Shijun | EurekAlert!

**Further reports about:**
> CNS
> Simulation
> angular momentum
> computer science
> numerical simulation
> orbits
> three-body systems

Physicists made crystal lattice from polaritons

20.03.2018 | ITMO University

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | University of California - Berkeley

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Anzeige

Anzeige

Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

VideoLinks

Science & Research

Science & Research

NASA | A Year in the Life of Earth's CO2

NASA Computer Model Provides a New Portrait of Carbon Dioxide

Black Holes Come to the Big Screen

The new movie "Interstellar" explores a longstanding fascination, but UA astrophysicists are using cutting-edge technology to go one better.

NASA's Swift Mission Observes Mega Flares from a Mini Star

NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star.

NASA | Global Hawks Soar into Storms

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row.

Baffin Island - Disappearing ice caps

Giff Miller, geologist and paleoclima-tologist, is walking the margins of melting glaciers on Baffin Island, Nunavut, Canada.

The Infrasound Network and how it works

The CTBTO uses infrasound stations to monitor the Earth mainly for atmospheric explosions.