Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Francisco State University astronomer helps discover giant planet orbiting 2 suns

14.06.2016

Kepler-1647b has largest size, orbit of any circumbinary planet found to date

San Francisco State University astronomer Stephen Kane is among a team of researchers who have discovered a new planet that orbits two suns simultaneously. The discovery was announced today at a meeting of the American Astronomical Society in San Diego.


This is an artist's rendering of the planet Kepler-1647b.

Credit: Lynette Cook

With a mass and radius nearly identical to that of Jupiter, the planet, Kepler-1647b, is the largest circumbinary planet -- a planet that orbits two stars -- ever discovered. Located in the direction of the constellation Cygnus, Kepler-1647b is 3,700 light-years away from Earth and approximately 4.4 billion years old, roughly Earth's age. The stars it orbits are similar in size to our Sun, and it also has the largest orbit of any circumbinary planet ever found, taking roughly three Earth-years to orbit its host stars.

The team that discovered the new planet used data from the Kepler telescope and includes astronomers from NASA's Goddard Space Flight Center and San Diego State University. Laurance Doyle, an astronomer at the SETI Institute, first noticed its transit past the suns in 2011, however more data and several years of analysis were needed to confirm the transit was caused by a circumbinary planet.

Kane, an associate professor of astrophysics at SF State and co-author of the discovery paper, currently serves as chair of the Kepler Habitable Zone Working Group. "During the lifetime of the Kepler Mission, we've only had a handful of opportunities to see the moments when this planet could align and block out the light from both stars, so the fact that we've found anything at all is pretty amazing," Kane said. "We weren't expecting to find anything like [Kepler-1647b], with such a long orbital period because those kinds of planets tend to fall through the cracks, but when we saw more than one transit and realized that this is the real deal, it was very exciting discovery to make."

Though Kane says Kepler-1647b's massive orbit places the planet within the "habitable zone" of its stars, meaning its proximity to its suns is fitting for liquid water to exist on the planetary body's surface, it is believed that the planet is a gas giant and unfit to support life. "It's as if you took Jupiter and placed it in Earth's orbit," Kane explained.

Kane and a student assistant have already begun working on calculations to try and estimate the possibility and frequency of moons orbiting giant planets like Kepler-1647b to see how likely it could be for one of those moons to not only exist, but be capable of supporting life as well. "You really have to be Johnny-on-the-spot with these types of experiments to have a chance of making significant finds," Kane said. "Hopefully [finding Kepler-1647b] is a sign of many more of these kinds of discoveries to come."

The research for this planetary discovery has been accepted for publication in The Astrophysical Journal with Veselin Kostov, a NASA Goddard postdoctoral fellow, as lead author.

Media Contact

Pete Melkus
melkuspe@sfsu.edu
415-338-6745

 @SFSU

http://www.sfsu.edu 

Pete Melkus | EurekAlert!

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>