Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Francisco State University astronomer helps discover giant planet orbiting 2 suns

14.06.2016

Kepler-1647b has largest size, orbit of any circumbinary planet found to date

San Francisco State University astronomer Stephen Kane is among a team of researchers who have discovered a new planet that orbits two suns simultaneously. The discovery was announced today at a meeting of the American Astronomical Society in San Diego.


This is an artist's rendering of the planet Kepler-1647b.

Credit: Lynette Cook

With a mass and radius nearly identical to that of Jupiter, the planet, Kepler-1647b, is the largest circumbinary planet -- a planet that orbits two stars -- ever discovered. Located in the direction of the constellation Cygnus, Kepler-1647b is 3,700 light-years away from Earth and approximately 4.4 billion years old, roughly Earth's age. The stars it orbits are similar in size to our Sun, and it also has the largest orbit of any circumbinary planet ever found, taking roughly three Earth-years to orbit its host stars.

The team that discovered the new planet used data from the Kepler telescope and includes astronomers from NASA's Goddard Space Flight Center and San Diego State University. Laurance Doyle, an astronomer at the SETI Institute, first noticed its transit past the suns in 2011, however more data and several years of analysis were needed to confirm the transit was caused by a circumbinary planet.

Kane, an associate professor of astrophysics at SF State and co-author of the discovery paper, currently serves as chair of the Kepler Habitable Zone Working Group. "During the lifetime of the Kepler Mission, we've only had a handful of opportunities to see the moments when this planet could align and block out the light from both stars, so the fact that we've found anything at all is pretty amazing," Kane said. "We weren't expecting to find anything like [Kepler-1647b], with such a long orbital period because those kinds of planets tend to fall through the cracks, but when we saw more than one transit and realized that this is the real deal, it was very exciting discovery to make."

Though Kane says Kepler-1647b's massive orbit places the planet within the "habitable zone" of its stars, meaning its proximity to its suns is fitting for liquid water to exist on the planetary body's surface, it is believed that the planet is a gas giant and unfit to support life. "It's as if you took Jupiter and placed it in Earth's orbit," Kane explained.

Kane and a student assistant have already begun working on calculations to try and estimate the possibility and frequency of moons orbiting giant planets like Kepler-1647b to see how likely it could be for one of those moons to not only exist, but be capable of supporting life as well. "You really have to be Johnny-on-the-spot with these types of experiments to have a chance of making significant finds," Kane said. "Hopefully [finding Kepler-1647b] is a sign of many more of these kinds of discoveries to come."

The research for this planetary discovery has been accepted for publication in The Astrophysical Journal with Veselin Kostov, a NASA Goddard postdoctoral fellow, as lead author.

Media Contact

Pete Melkus
melkuspe@sfsu.edu
415-338-6745

 @SFSU

http://www.sfsu.edu 

Pete Melkus | EurekAlert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>