Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian physicists create a high-precision 'quantum ruler'

24.06.2016

Physicists have devised a method for creating a special quantum entangled state

Physicists from the Russian Quantum Center (RQC), MIPT, the Lebedev Physical Institute, and L'Institut d'Optique (Palaiseau, France) have devised a method for creating a special quantum entangled state. This state enables producing a high-precision ruler capable of measuring large distances to an accuracy of billionths of a metre. The results of the study have been published in Nature Communications.


Alexander Ulanov is in the Laboratory of Quantum Optics, Russian Quantum Center.

Credit: Russian Quantum Center

"This technique will enable us to use quantum effects to increase the accuracy of measuring the distance between observers that are separated from one another by a medium with losses. In this type of medium, quantum features of light are easily destroyed," says Alexander Lvovsky, a co-author of the paper, the head of the RQC scientific team that conducted the research, and a professor of the University of Calgary.

The study focused on what is known as N00N states of photons in which there is a superposition of spatial positions of not one, but several photons. That is, a multiphoton laser pulse is at two points at the same time.

These states could be important for metrology, or, more precisely, they could significantly improve the capabilities of optical interferometers, such as those used to detect gravitational waves in the LIGO project.

In optical interferometers, laser beams from two mirrors "mix" with each other and interference occurs - the light waves either strengthen or cancel each other - depending on the exact position of the mirrors. This allows their microscopic displacements to be measured, because the distance between the interferometric fringes is the same as the wavelength - approximately 0.5-1 microns. However, many experiments require even greater precision. Detecting gravitational waves, for example, required measurements of displacements comparable to the diameter of a proton.

"Though such extremely high sensitivities have already be achieved, N00N states could be useful to increase the accuracy even further, because the interference fringes they create are much narrower than the wavelength." - says Philippe Grangier, another co-author of the study, a professor of L'Institut d'Optique.

"The problem is that N00N states are extremely susceptible to losses. When travelling over long distances -in either atmospheric or fiber channels - a light beam inevitably loses intensity. For ordinary, classical light, that does not matter too much. But if an entangled state of light passes through a medium with even small losses, it "disentangles" and is no longer useful," says Lvovsky.

He and his colleagues found a way of solving this problem.

"There is a phenomenon called entanglement swapping. Suppose that Alice and Bob have an entangled state. If I then take one part of Alice's entangled state, and another part from Bob, and I do a joint measurement on them, the remaining parts of Alice's and Bob's states will also become entangled even though they never interacted" says Lvovsky.

"In our experiment conducted at the RQC laboratory, Alice and Bob create two entangled states. The send one of the parts to a medium with losses, which in our experiment is simulated by darkened glass. A third observer, midway between Alice and Bob, conducts joint measurements on these parts. This results in entanglement swapping: the remaining parts of Alice and Bob's states are in the N00N state. And as these parts did not experience losses, they exhibit their quantum properties in full," explains the lead author of the paper, Alexander Ulanov, a researcher at RQC and MIPT postgraduate student.

According to him, the level of losses in the glass corresponds to an atmospheric thickness of approximately 50 kilometres. The same method could also be used for light propagating in vacuum, either in the current ground-based interferometers such as LIGO, or in future space-based ones such as LISA.

Media Contact

Sergey Divakov
divakov@phystech.edu
7-925-834-0978

 @phystech

https://mipt.ru/english/ 

Sergey Divakov | EurekAlert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>