Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB physicists let magnetic dipoles interact on the nanoscale for the first time

16.05.2013
'Of great technical interest for future hard disk drives'

Physicists at the Ruhr-Universität Bochum (RUB) have found out how tiny islands of magnetic material align themselves when sorted on a regular lattice - by measurements at BESSY II. Contrary to expectations, the north and south poles of the magnetic islands did not arrange themselves in a zigzag pattern, but in chains.

"The understanding of the driving interactions is of great technological interest for future hard disk drives, which are composed of small magnetic islands", says Prof. Dr. Hartmut Zabel of the Chair of Experimental Physics / Solid State Physics at the RUB. Together with colleagues from the Helmholtz-Zentrum in Berlin, Bochum's researchers report in the journal "Physical Review Letters".

Complete chaos in the normal state

Many atoms behave like compass needles, that is, like little magnetic dipoles with a north and a south pole. If you put them close together in a crystal, all the dipoles should align themselves to each other, making the material magnetic. However, this is not the case. A magnetic material is only created when specific quantum mechanical forces are at work. Normally, the forces between the atomic dipoles are by far too weak to cause magnetic order. Moreover, even at low temperatures, the thermal energy causes so much movement of the dipoles that complete chaos is the result. "However, the fundamental question remains of how magnetic dipoles would align themselves if the force between them was big enough", Prof. Zabel explains the research project.

Square lattice of magnetic islands

To investigate this, the researchers used lithographic methods to cut circular islands of a mere 150 nanometers in diameter from a thin magnetic layer. They arranged these in a regular square lattice. Each island contained about a million atomic dipoles. The forces between two islands were thus stronger by a factor of a million than that between two single atoms. If you leave these dipoles to their own resources, at low temperatures you can observe the arrangement that results exclusively from the interaction between the dipoles. They assume the most favourable pattern in terms of energy, the so-called ground state. The islands serve as a model for the behaviour of atomic dipoles.

Magnetic microscopy

The electron synchrotron BESSY II at the Helmholtz-Zentrum in Berlin is home to a special microscope, the photon emission electron microscope, with which the RUB physicists made the arrangement of the magnetic dipole islands visible. Using circularly polarised synchrotron light (X-ray photons), the photons stimulate specific electrons. These provide information on the orientation of the dipoles in the islands. The experiments were carried out at low temperatures so that the thermal movement could not interfere with the orientation of the dipoles.

Dipoles arrange themselves in chains

The magnetic dipoles formed chains, i.e. the north pole of one island pointed to the south pole of the next island. "This result was surprising", says Zabel. In the lattice, each dipole island has four neighbours to which it could align itself. You cannot tell in advance in which direction the north pole will ultimately point. "In fact, you would expect a zigzag arrangement", says the Bochum physicist. Based on the chain pattern observed in the experiment, the researchers showed that higher order interactions determine how the magnetisation was oriented. Not only dipolar, but also quadrupolar and octopolar interactions play a role. This means that a magnetic island exerts forces on four or eight neighbours at the same time.

Magnetic islands in the hard drives of the future

In future, hard disks will be made up of tiny magnetic islands (bit pattern). Each magnetic island will form a storage unit which can represent the bit states "0" and "1" - encoded through the orientation of the dipole. For a functioning computer, you need a configuration in which the dipole islands interact as little as possible and can thus assume the states "0" and "1"independently of each other. For the technical application, a precise understanding of the driving interactions between magnetic islands is therefore crucial.

Funding

The German Research Foundation (DFG) supported the work in Bochum within the Collaborative Research Centre (SFB) 491 „Magnetic hetero-structures: spin structures and spin transport"; BESSY II at the Helmholtz-Zentrum Berlin is supported by the Federal Ministry of Education and Research (BMBF).

Bibliographic record

M. Ewerlin, D. Demirbas, F. Brüssing, O. Petracic, A.A. Ünal, S. Valencia, F. Kronast, H. Zabel (2013): Magnetic Dipole and Higher Pole Interaction on a Square Lattice, Physical Review Letters, DOI: 10.1103/PhysRevLett.110.177209

Figures online

Two images related to this press release can be found online at: http://aktuell.ruhr-uni-bochum.de/pm2013/pm00144.html.en

Further information

Prof. Dr. Hartmut Zabel
Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität
44780 Bochum, Germany
Editor: Dr. Julia Weiler

Hartmut Zabel | EurekAlert!
Further information:
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00144.html.en

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>