Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016

Chemical diversity in planet forming regions unveiled

Astronomers have long known that organic molecules form in diffuse gas clouds floating between stars. It is thought that as the Solar System formed 4.6 billion years ago, some of these organic molecules were transported from interstellar space to the planet forming disk.


(Upper panel) A schematic illustration of the infalling gas around the protostar. A disk structure with a radius of about 50 AU exists around the protostar. The disk in turn is surrounded by an envelope of gas extended over a 200 AU scale. OCS exists in the envelope gas, while methyl formate mainly exists in the boundary area between the envelope gas and the disk structure. (Lower left) Intensity distribution of methyl formate (HCOOCH3) observed with ALMA. A structure elongated along A-B can be seen centered on the position of the protostar. Methyl formate is located within 50 AU from the protostar.

(Lower right) Intensity distribution of OCS (carbonyl sulfide) observed with ALMA. A structure elongated along A-B can be seen centered on the position of the protostar position, similar to the case of OCS. However the distribution of OCS (~200 AU) is more extended than that of methyl formate.

Credit: ALMA (ESO/NAOJ/NRAO), Oya et al.

Later, these molecules played important roles in the chemical evolution resulting in the emergence of life on the Earth. However, it is still unknown what kinds and quantities of organic molecules were actually supplied from interstellar space.

Although radio astronomy observations during the last decade showed that saturated complex organic molecules, such as methanol (CH3OH) and methyl formate (HCOOCH3) [1], exist around Solar-type protostars, their distributions were too compact to be resolved with the radio telescopes available at the time.

With ALMA, an international team lead by Yoko Oya, a graduate student of Department of Physics, The University of Tokyo, and Nami Sakai, an associate chief scientist of RIKEN, studied the distribution of various organic molecules around a Solar-type protostar IRAS 16293-2422A at a high spatial resolution. They discovered a ring structure of complex organic molecules around the protostar.

The radius of the ring is 50 times wider than the Earth's orbit. This size is comparable to the size of the Solar System, and the ring structure most likely represents the boundary region between infalling gas and a rotating disk structure around the protostar.

The observations clearly showed the distribution of large organic molecules methyl formate (HCOOCH3) and carbonyl sulfide (OCS). Apparently the distribution of methyl formate is confined in a more compact area around the protostar than the OCS distribution, which mainly traces the infalling gas.

"When we measured the motion of the gas containing methyl formate by using the Doppler effect," said Oya "we found a clear rotation motion specific to the ring structure." In this way, they identified the rotating ring structure of methyl formate, although it is not resolved spatially. A similar ring structure is also found for methanol.

These saturated organic molecules are formed in interstellar space and are preserved on the surfaces of dust grains. Around the outer boundary of the disk structure, they evaporate due to shock generated by collisions of the disk and infalling material, and/or due to heating by the light from the baby star. This result is the first direct evidence that interstellar organic materials are indeed fed into the rotating disk structure that eventually forms a planetary system.

In 2014, the team found a similar ring structure of SO (sulfur monoxide) around another Solar-type protostar L1527. In this source, unsaturated complex organic molecules such as CCH and cyclic-C3H2 are very abundant in the infalling gas, while SO preferentially exists in the boundary between the infalling gas and the disk structure.

Although the physical structure in L1527 is similar to that found in IRAS 16293-2422A, the chemical composition is much different. Saturated complex organic molecules are almost completely absent in L1527. The present result, taken together with previous results on L1527, clearly demonstrates for the first time that the materials delivered to a planetary system differ from star to star. A new perspective on chemical composition is thus indispensable for a thorough understanding of the origin of the Solar System and the origin of life on the Earth.

###

Note.

[1] Organic molecules without multiple bonds between atoms are collectively called saturated molecules. On the other hand, molecules with multiple bonds are called unsaturated molecules.

Media Contact

Dr. Masaaki Hiramatsu
hiramatsu.masaaki@nao.ac.jp
81-422-343-630

http://www.nins.jp/english/ 

Dr. Masaaki Hiramatsu | EurekAlert!

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>