Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta-Mission: The incredible flight of the lander »Philae«

28.11.2014

Data of the „ROMAP“-Magentometer aids in reconstruction of flight path

Just a little time after Rosetta lander „Philae“ touched down on a comet it was clear that the mission was not continuing as expected, because the lander bounced off the surface. The international team of scientists lead by geophysicist Dr. Uli Auster from the Institut für Geophysik und extraterrestische Physik was working at the „Philae“ control center at that time and followed the incredible flight of the lander.


Close up of the ROMAP-Instrument

IGEP/TU Braunschweig

The data obtained by the ROMAP magnetometer from Braunschweig immediatly showed the signatures of this bouncing and the subsequent touchdowns. With the data, the movement on the comet can be reconstructed.

Bounce: two hours above the comet

In the evening of 12th November, 2014, the scientists around Dr. Hans-Ulrich Auster were surprised when they saw the data of the ROMAP magnetometer immediately after touchdown: „With the magnetometer we can reconstuct the movement of the lander, just like the rotation of a compass needle. Consequently we could see instantly that „Philae“ bounced off the surface and finally returned after two hours. After evaluating our data we now have more information on the path to the final and still unknown landing site“ explained Dr. Auster.

Possible collision with a crater rim

Now the magnetic field data reveals that after the first touchdown „Philae“ started to rotate about its vertical axis, says Auster. The reason was that the reaction wheel, that was stabilizing the lander during descend, transferred its momentum to the freely moving lander. Within 40 minutes Philae accelerated to a rotational velocity of about 5 rpm, which is comparable to a wind turbine at low wind speeds“ says the geophysicist. But after 45 minutes the pattern changed suddenly: „The rotational velocity decreased to half the original speed, the axis tilted and the lander began to tumble. Most likely the reason was a collision with a crater rim“ summarized Dr. Auster.

Second landing decides Philae's fate

The magnetometer from Braunschweig shows that the lander tumbled above the surface for another hour before it jarringly touched down for the second time. „Then the fate of the lander was decided, which was also visible in magnetic field signatures. After first grazing the surface, „Philae“ landed on its feet at the last moment. After another seven minute bounce the lander arrived at its final position surrounded by icy walls“ say Hans-Ulrich Auster. „Although there was some luck involved, the astonishing landing impressively demonstrated that the lander was sturdy enough to not only withstand the harsh environmental conditions of space but also managed to survive this arduous landing sequence.”

ROMAP-Instrument

The Rosetta Lander Magnetometer and Plasma Monitor (ROMAP) is one of ten instruments on the lander „Philae“, that investigates the magnetic field and solar wind parameters of the comet 67P/Churyumov-Gerasimenko for the ESA Mission Rosetta. Lead by Dr. Hans-Ulrich Auster of the Institut für Geophysik und extraterrestrische Physik at Technische Universität Braunschweig scientists from the Energy Research center in Budapest, the Institut für Weltraumforschung Graz in Austria and the Max-Planck Institut für Sonnensystemforschung in Göttingen contribute.

Contact
Dr. Hans-Ulrich Auster
Institut für Geophysik und extraterrestrische Physik
Technische Universität Braunschweig
Mendelssohnstraße 3
38106 Braunschweig
Tel.: 0531 391-5241
E-Mail: uli.auster@tu-braunschweig.de
www.igep.tu-bs.de


Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=7684

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>