Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Take First Look into the “Eye” of Majoranas

01.12.2016

Majorana fermions are particles that could potentially be used as information units for a quantum computer. An experiment by physicists at the Swiss Nanoscience Institute and the University of Basel’s Department of Physics has confirmed their theory that Majorana fermions can be generated and measured on a superconductor at the end of wires made from single iron atoms. The researchers also succeeded in observing the wave properties of Majoranas and, therefore, in making the interior of a Majorana visible for the first time. The results were published in the Nature journal npj Quantum Information.

Around 75 years ago, Italian physicist Ettore Majorana hypothesized the existence of exotic particles that are their own antiparticles. Since then, interest in these particles, known as Majorana fermions, has grown enormously given that they could play a role in creating a quantum computer.


Atomic force microscopy image of the end of a mono-atomic iron wire. The individual iron atoms are clear to see, as well as the “eye” of the Majorana fermions on the end.

University of Basel, Department of Physics

Majoranas have already been described very well in theory. However, examining them and obtaining experimental evidence is difficult because they have to occur in pairs but are then usually bound to form one normal electron. Ingenious combinations and arrangements of various materials are therefore required to generate two Majoranas and keep them apart.

Collaboration between theory and practice

The group led by Professor Ernst Meyer has now used predictions and calculations by theoretical physicists Professor Jelena Klinovaja and Professor Daniel Loss (from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics) to experimentally measure states that correspond to Majoranas.

On a superconductor, the researchers evaporated single iron atoms with spin that, due to the row structure of the lead atoms, arrange themselves into a minute wire comprising one row of single atoms. The wires reached an astounding length of up to 70 nanometers.

Single Majoranas on the ends

The researchers examined these mono-atomic chains with the aid of scanning tunneling microscopy and, for the first time, with an atomic force microscope as well. Using the images and measurements, they found clear indications of the existence of single Majorana fermions on the ends of the wires under certain conditions and from a specific wire length on.

Despite the distance between them, the two Majoranas on the ends of the wires are still connected. Together, they form a new state extended across the whole wire that can either be occupied (“1”) or not occupied (“0”) by an electron. This binary property can then serve as the basis for a quantum bit (Qubit) and means that Majoranas, which are also very robust against a number of environmental influences, are promising candidates for creating a future quantum computer.

Predicted wavefunction measured

The researchers from Basel have not only shown that single Majoranas can be generated and measured at the ends of an iron wire, they also performed the first experiment to show that Majoranas are extended quantum objects with an inner structure, as predicted by their theory colleagues. Over an area of several nanometers, the measurements showed the expected wavefunction with characteristic oscillations and twofold decay lengths, which have now been made visible for the first time.

Original paper

Rémy Pawlak, Marcin Kisiel, Jelena Klinovaja, Tobias Meier, Shigeki Kawai, Thilo Glatzel, Daniel Loss, and Ernst Meyer
Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface
npj Quantum Information (2016), doi: 10.1038/npjqi.2016.35

Further information

Prof. Dr. Jelena Klinovaja, University of Basel, Department of Physics, tel +41 61 267 36 56, email: jelena.klinovaja@unibas.ch
Prof. Dr. Daniel Loss, University of Basel, Department of Physics, tel +41 61 267 37 49, email: daniel.loss@unibas.ch
Prof. Dr. Ernst Meyer, Univeristy of Basel, Department of Physics, tel +41 61 267 37 24, email:ernst.meyer@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>