Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers synthesize atomically precise diamond-shaped nanoclusters of silver

12.09.2016

A wide international collaboration involving researchers from four countries - China, Australia, Germany and Finland - have managed to synthesize and characterize two previously unknown, record-large silver nanoclusters of 136 and 374 silver atoms.

These diamond-shaped nanoclusters (see Figure), consisting of a silver core of 2 to 3 nanometers and a protecting layer of silver atoms and organic thiol molecules, are the largest ones whose structure is now known to atomic precision. The research (1) was published in Nature Communications on 9 September 2016.


This figure shows: Upper row: (a) top and (b) side view of the 136-atom silver nanocluster. Lower row: (c) top and (d) side view of the 374-atom silver nanocluster. The metal cores of these clusters have a diameter of 2 and 3 nm, respectively. Silver atoms in the metal core are denoted by large orange sphere. The core is protected by a silver-thiol layer (green: silver; yellow: sulfur; carbon: gray). Courtesy of Nanfeng Zheng, Xiamen University.

Credit: The University of Jyväskylä

The nanoclusters where synthesized in Xiamen University in China and characterized by X-ray crystallography and electron microscopy in China, Australia and Germany. Their electronic structure and optical properties were studied computationally in the Nanoscience Center (NSC) of the University of Jyväskylä in Finland.

Gold nanoclusters that are stabilized by a thiol molecular layer have been known for decades, but only during the latest years silver clusters have attracted more interest in the research community. Silver is a desirable material for nanocluster synthesis since it is a cheaper metal than gold and its optical properties are better controllable for applications. However, synthesis recipes that would produce silver clusters that are stable for prolonged times are not so widely known as for gold.

"These largest atomically precise silver nanoclusters known thus far serve as excellent model systems to understand how silver nanoparticles grow," says Professor Nanfeng Zheng whose research group prepared the clusters in Xiamen University in China. "The internal structure of the metal core is a combination of little crystallites of silver that are joined together to form a five-fold symmetric diamond-shape structure."

"From a theoretical point of view these new clusters are very interesting," says Academy Professor Hannu Häkkinen from the NSC in Jyväskylä. "These clusters are already big enough that they have properties similar to silver metal, such as strong absorption of light leading to collective oscillations of the electron cloud known as plasmons, yet small enough that we can study their electronic structure in detail. Much to our surprise, the calculations showed that electrons in the organic molecular layer take part actively in the collective oscillation of the silver electrons. It seems possible to then activate these clusters by light in order to do chemistry at the ligand surface."

###

The other NSC researchers involved in the work were Xi Chen and Lauri Lehtovaara. The computational work was done at the CSC - the Finnish IT Centre for Science. The work at the University of Jyväskylä was supported by the Academy of Finland.

More information:

Academy Professor Hannu Häkkinen, University of Jyväskylä, Finland, hannu.j.hakkinen(at)jyu.fi tel:+358 400 247 973

Professor Nanfeng Zheng, Xiamen University, China, nfzheng(at)xmu.edu.cn

Academy of Finland Communications
Communications Specialist Leena Vähäkylä
tel. +358 295 335 139
firstname.lastname(at)aka.fi

References:

(1) H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A.J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen and N. Zheng, "Plasmonic twinned silver nanoparticles with molecular precision", Nature Communications 7, 12809 (2016), published online 9 September 2016, doi: 10.1038/ncomms12809

Figure: Upper row: (a) top and (b) side view of the 136-atom silver nanocluster. Lower row: (c) top and (d) side view of the 374-atom silver nanocluster. The metal cores of these clusters have a diameter of 2 and 3 nm, respectively. Silver atoms in the metal core are denoted by large orange sphere. The core is protected by a silver-thiol layer (green: silver; yellow: sulfur; carbon: gray). Courtesy of Nanfeng Zheng, Xiamen University.

Hannu Häkkinen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>