Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design solids that control heat with spinning superatoms

07.09.2016

Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues

Researchers found that the thermal conductivity of superatom crystals is directly related to the rotational disorder within those structures. The findings were published in an article in Nature Materials this week.


Rotational disorder affects thermal conductivity in superatom crystals.

Credit: Ryan Hastie, Department of Chemistry, Columbia University

Carnegie Mellon University's Associate Professor of Mechanical Engineering Jonathan A. Malen was a corresponding author of the paper titled "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals."

Superatom crystals are periodic--or regular--arrangements of C60 fullerenes and similarly sized inorganic molecular clusters. The nanometer sized C60s look like soccer balls with C atoms at the vertices of each hexagon and pentagon.

"There are two nearly identical formations, one that has rotating (i.e. orientationally disordered) C60s and one that has fixed C60s," said Malen. "We discovered that the formation that contained rotating C60s has low thermal conductivity while the formation with fixed C60s has high thermal conductivity."

Although rotational disorder is known in bulk C60, this is the first time that the process has been leveraged to create very different thermal conductivities in structurally identical materials.

Imagine a line of people passing sandbags from one end to the other. Now imagine a second line where each person is spinning around--some clockwise, some counter clockwise, some fast, and some slow. It would be very difficult to move a sandbag down that line.

"This is similar to what is happening with thermal conductivity in the superatoms," explained Malen. "It is easier to transfer heat energy along a fixed pattern than a disordered one."

Columbia University's Assistant Professor of Chemistry Xavier Roy, the other corresponding author of the study, created the superatom crystals in his laboratory by synthesizing and assembling the building blocks into the hierarchical superstructures.

"Superatom crystals represent a new class of materials with potential for applications in sustainable energy generation, energy storage, and nanoelectronics," said Roy. "Because we have a vast library of superatoms that can self-assemble, these materials offer a modular approach to create complex yet tunable atomically precise structures."

The researchers believe that these findings will lead to further investigation into the unique electronic and magnetic properties of superstructured materials. One future application might include a new material that could change from being a thermal conductor to a thermal insulator, opening up the potential for new kinds of thermal switches and transistors.

"If we could actively control rotational disorder, we would create a new paradigm for thermal transport," said Malen.

For more information, read the Nature Materials article: "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals."

###

Additional Carnegie Mellon investigators included postdoctoral researcher and alumnus Wee-Liat Ong, Patrick S. M. Dougherty, Alan J. H. McGaughey, and C. Fred Higgs. Ong is jointly advised by Malen and Roy as part of a National Science Foundation MRSEC grant led by Columbia University. Other Columbia University researchers included E. O'Brien and D. Paley.

Malen, director of the Malen Laboratory at Carnegie Mellon, received the College of Engineering's Outstanding Research Award in 2016.

About the College of Engineering: The College of Engineering at Carnegie Mellon University is a top-ranked engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well-known for working on problems of both scientific and practical importance. Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world.

Lisa Kulick | EurekAlert!

Further reports about: Mellon Nature Materials crystals spinning structures superatoms thermal conductivity

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>