Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design solids that control heat with spinning superatoms

07.09.2016

Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues

Researchers found that the thermal conductivity of superatom crystals is directly related to the rotational disorder within those structures. The findings were published in an article in Nature Materials this week.


Rotational disorder affects thermal conductivity in superatom crystals.

Credit: Ryan Hastie, Department of Chemistry, Columbia University

Carnegie Mellon University's Associate Professor of Mechanical Engineering Jonathan A. Malen was a corresponding author of the paper titled "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals."

Superatom crystals are periodic--or regular--arrangements of C60 fullerenes and similarly sized inorganic molecular clusters. The nanometer sized C60s look like soccer balls with C atoms at the vertices of each hexagon and pentagon.

"There are two nearly identical formations, one that has rotating (i.e. orientationally disordered) C60s and one that has fixed C60s," said Malen. "We discovered that the formation that contained rotating C60s has low thermal conductivity while the formation with fixed C60s has high thermal conductivity."

Although rotational disorder is known in bulk C60, this is the first time that the process has been leveraged to create very different thermal conductivities in structurally identical materials.

Imagine a line of people passing sandbags from one end to the other. Now imagine a second line where each person is spinning around--some clockwise, some counter clockwise, some fast, and some slow. It would be very difficult to move a sandbag down that line.

"This is similar to what is happening with thermal conductivity in the superatoms," explained Malen. "It is easier to transfer heat energy along a fixed pattern than a disordered one."

Columbia University's Assistant Professor of Chemistry Xavier Roy, the other corresponding author of the study, created the superatom crystals in his laboratory by synthesizing and assembling the building blocks into the hierarchical superstructures.

"Superatom crystals represent a new class of materials with potential for applications in sustainable energy generation, energy storage, and nanoelectronics," said Roy. "Because we have a vast library of superatoms that can self-assemble, these materials offer a modular approach to create complex yet tunable atomically precise structures."

The researchers believe that these findings will lead to further investigation into the unique electronic and magnetic properties of superstructured materials. One future application might include a new material that could change from being a thermal conductor to a thermal insulator, opening up the potential for new kinds of thermal switches and transistors.

"If we could actively control rotational disorder, we would create a new paradigm for thermal transport," said Malen.

For more information, read the Nature Materials article: "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals."

###

Additional Carnegie Mellon investigators included postdoctoral researcher and alumnus Wee-Liat Ong, Patrick S. M. Dougherty, Alan J. H. McGaughey, and C. Fred Higgs. Ong is jointly advised by Malen and Roy as part of a National Science Foundation MRSEC grant led by Columbia University. Other Columbia University researchers included E. O'Brien and D. Paley.

Malen, director of the Malen Laboratory at Carnegie Mellon, received the College of Engineering's Outstanding Research Award in 2016.

About the College of Engineering: The College of Engineering at Carnegie Mellon University is a top-ranked engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well-known for working on problems of both scientific and practical importance. Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world.

Lisa Kulick | EurekAlert!

Further reports about: Mellon Nature Materials crystals spinning structures superatoms thermal conductivity

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>