Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create first global map of water in moon's soil

14.09.2017

In research that may prove useful to future lunar explorers, scientists from Brown University have created the first quantitative map of water and its chemical building blocks trapped in the uppermost portion of the Moon's soil.

The study, published in Science Advances, builds on the initial discovery in 2009 of water and a related molecule -- hydroxyl, which consists of one atom each of hydrogen and oxygen -- in the lunar soil. The latest study uses a new calibration of data taken from NASA's Moon Mineralogy Mapper, which flew aboard India's Chandrayaan-1 spacecraft, to quantify how much water is present on a global scale.


A new map reveals quantities of water trapped in the lunar soil. The amounts increase toward the poles, suggesting that much of the water was implanted by the solar wind (yellow dots mark Apollo landing sites).

Credit: Milliken lab / Brown University

"The signature of water is present nearly everywhere on the lunar surface, not limited to the polar regions as previously reported," said the study's lead author, Shuai Li, who performed the work while a Ph.D. student at Brown University and is now a postdoctoral researcher at the University of Hawaii. "The amount of water increases toward the poles and does not show significant difference among distinct compositional terrains."

The water concentration reaches a maximum average of around 500 to 750 parts per million in the higher latitudes. That's not a lot -- less than is found in the sands of Earth's driest deserts -- but it's also not nothing.

"This is a roadmap to where water exists on the surface of the Moon," said Ralph Milliken, an associate professor at Brown and Li's co-author. "Now that we have these quantitative maps showing where the water is and in what amounts, we can start thinking about whether or not it could be worthwhile to extract, either as drinking water for astronauts or to produce fuel."

The researchers say that the way the water is distributed across the Moon gives clues about its source. The distribution is largely uniform rather than splotchy, with concentrations gradually decreasing toward the equator. That pattern is consistent with implantation via solar wind -- the constant bombardment of protons from the sun, which can form hydroxyl and molecular water once emplaced.

Although the bulk of the water mapped in this study could be attributed to solar wind, there were exceptions. For example, the researchers found higher-than-average concentrations of water in lunar volcanic deposits near the Moon's equator, where background water in the soil is scarce. Rather than coming from solar wind, the water in those localized deposits likely comes from deep within the Moon's mantle and erupted to the surface in lunar magma. Li and Milliken reported those findings separately in July of this year.

The study also found that the concentration of water changes over the course of the lunar day at latitudes lower than 60 degrees, going from wetter in the early morning and evening to nearly bone dry around lunar noon. The fluctuation can be as much as 200 parts per million.

"We don't know exactly what the mechanism is for this fluctuation, but it tells us that the process of water formation in the lunar soil is active and happening today," Milliken said. "This raises the possibility that water may re-accumulate after extraction, but we need to better understand the physics of why and how this happens to understand the timescale over which water may be renewed."

Li says that laboratory research could be useful in better understanding these kinds of processes. "We hope this motivates the planetary community to continue lab experiments to understand the interaction of solar wind with the lunar soil and possible mechanisms for how water migrates across the lunar surface on these relatively short timescales," he said.

As useful as the new maps may be, they still leave plenty of unanswered questions about lunar water. The Moon Mineralogy Mapper, which supplied the data for the research, measures light reflected off of the lunar surface. That means that it can't look for water in places that are permanently shadowed from the sun's rays. Many scientists think these permanently shadowed regions, such as the floors on impact craters in the Moon's polar regions, could hold large deposits or water ice.

"Those ice deposits may indeed be there," Milliken said, "but because they are in shadowed areas it's not something we can easily confirm using these data."

It's also not clear how deep into the soil the water mapped in the study goes.

"We're only sensing the upper millimeter or so of soil, and we can't say for sure what the water content is like underneath that," Milliken said. "The distribution of water with depth could make a big difference in terms of how much water is actually there."

Still, the researchers say, the study provides a good starting point for thinking about how lunar water resources might be utilized.

"It remains to be seen whether extraction could be feasible," Milliken said. "But these results show us what the range of water availability across the surface is so we can start thinking about where we might want to go to get it and whether it makes economic sense to do so."

###

The research was funded by the NASA Lunar Advanced Science and Exploration Research Program (NNX12AO63G).

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>